OPPORTUNITIES AND CHALLENGES OF DIGITAL SUPPLY CHAIN: A SYSTEMATIC LITERATURE REVIEW USING SCOR FRAMEWORK

Muhammad Saad Salahudin^{1*}, Imam Baihaqi², Yen-Ching Liu³

Department of Business Management, Institut Teknologi Sepuluh Nopember, Indonesia

Department of Business Administration, National Yunlin,

University of Science and Technology, Taiwan

E-mail: 1) 21salahudin.saad21@gmail.com

Abstract

Firms are increasingly integrating digital technology into their supply network systems for the purpose of attain global competitiveness. The utilization of digital technology has resulted in the Rise of a new supply chain management system known as the digital supply chain. Many parties believe that digital supply chain has several opportunities for companies, however, a number of researchers argues that the dependence on digital technology in the worldwide supply chain is accompanied by substantial obstacles. Therefore, this study intends to understand the opportunities and difficulties of digital supply chain and identify the future research agenda in this research area to develop better digital supply chain concepts and implementations. This research conducted systematic literature review through content analysis based on five dimensions in the SCOR model, which is plan, source, make, deliver, and return dimension. The analysis in this research finds that digital supply chain can enhances demand forecasting and product development in plan dimension, enables supplier selection and procurement automation in source dimension, facilitates smart and additive manufacturing in make dimension, optimizes inventory management, order management, transportation and logistics management in deliver dimension, as well as supports closed loop supply chain or circular economy in return dimension. However, the lack of infrastructure, policy, and coordination, along with financial, technical, and technological barrier, has become the common challenges of digital supply chain. Cybersecurity issue is also another main issue of the digital supply network. Through this analysis, the future research agenda can finally be taken in this research.

Keywords: Digital Supply Chain, Systematic Literature Review, SCOR Model

1. INTRODUCTION

In the current fast-changing worldwide supply chain landscape, the importance of global competitiveness cannot be overstated. Countries and companies, especially multinationals companies, are currently trying their best to become a component of the worldwide supply network. For example, the best mechanical designer is in Germany and for electrical items is in Korea. China is superior in manufacturing, while Vietnam is excelled in assembling and India choose to specialize on the information system. There is no reason for each region or company to do all the work from design to distribution. Participating in the global supply chain provides benefits to them (Mukherjee, 2017) and their global competitiveness has a major role for them to survive in this hyper-competition global supply chain (Hülsmann et

https://transpublika.co.id/ojs/index.php/Transekonomika

al., 2008). Therefore, organizations aim to get a competitive edge by engaging skilled, cost-effective suppliers situated globally (Gereffi & Lee, 2016).

The global supply chain is distinguished by enterprises who distribute their products in many countries, establish production facilities abroad, or procure goods from overseas suppliers (Caniato et al., 2013). The worldwide supply chain encompasses the movement of resources and data from their initial state as raw materials to their final state as finished goods, spanning across the whole globe. The process entails the cooperation of several stakeholders, such as suppliers, producers, logistics partners, and retailers, to fulfill client demand across different nations (Chopra & Meindl, 2016). It makes it possible for businesses to reach international markets, reduce manufacturing costs, and make use of specialist skills in various geographical areas (Hugos, 2018). Nowadays, the global supply chain is driven and continuously evolving by global trade policies, technological advancements, and market dynamics (Christopher, 2016). With businesses under significant pressure to create new solutions, adapt, and optimize their practices to stay dynamic, it is essential to comprehend the primary patterns influencing the worldwide supply chain and the significance of global competitiveness in this framework.

To maintain their global competitiveness, an escalating number of supply chains have embraced the ideas behind the fourth industrial revolution, specifically digital technologies (Kamble, Gunasekaran, Ghadge, et al., 2020). Digital technologies have become more important because it is also revolutionizing corporate environments, markets, models, and the ways people work (Rajput & Singh, 2019). The Digital Supply Chain (DSC) is a new method for managing supply chains that has emerged as a consequence of digital technology's impact on supply chain applications (Zekhnini et al., 2020). The digital supply chain is an extremely complex system that relies on coordinated communication and cooperation between several businesses and handles massive amounts of data. The value, accessibility, and affordability of services are all enhanced by digital technology, software, and networks. The expected outputs that would be the result of such a system would then deliver Steady, adaptable, and efficient outcomes (Büyüközkan & Göçer, 2018). The adoption of the chain of digital supply practices allows companies to overcome the limitations of traditional supply chain operations, resulting in a highly efficient and integrated system for maximum performance (Li et al., 2023). It is clear that the shift towards the chain of digital supply is essential for the continuation of life and global competitiveness of a company (Hartley & Sawaya, 2019).

The application of digital technologies such as IoT, blockchain, and AI has fundamentally transformed the functioning of global supply chains. It has led to improved efficiency, visibility, and cooperation between partners in the supply chain, ultimately resulting in a more agile and responsive supply chain. This phenomenon has also attracted much attention from researchers in recent years. Some research has concentrated on the execution of I4 technologies, the readiness level of I4 technologies, and the technology maturity model (Ramanathan & Samaranayake, 2022; Santos & Martinho, 2019; Schumacher et al., 2016). Other research focuses on the digital supply chain management resilience (Ivanov, 2024), digital supply chain dynamic capabilities (Queiroz et al., 2021), and digital supply chain finance (Banerjee et al., 2021). On top of that, they also examine the implementation of digital supply chain, including the shift from analogue to digital supply chain management (Agrawal & Narain, 2018), as well as the drivers and barriers to

Muhammad Saad Salahudin, Imam Baihaqi, Yen-Ching Liu

the adoption of digital supply chain (Raj et al., 2020; Stentoft et al., 2021; Tjahjono et al., 2017). These studies prove that there is enormous potential in developing digital supply chains.

Nevertheless, several scholars argue that the reliance on digital technology in the global supply chain comes with significant challenges. The utilization of IoT, blockchain, and AI creates vulnerabilities that can be exploited by cyber attackers, leading to potential disruptions in the logistic network. Research by (Nozari et al., 2022) defines that the primary issues confronting IoT-based supply chains in fast-moving consumer goods (FMCG) businesses are cybersecurity and inadequate infrastructure. In India, challenges in digital supply chain include infrastructure constraints, digital divide issues, insufficient internet connectivity, technological disparities, lack of digital literacy, and skill gaps among stakeholders (Gupya, 2023). Blockchain-enabled supply networks have hurdles encompassing both technical and non-technical aspects, like the appropriateness of different consensus methods for supply chain applications (Jabbar et al., 2021). Therefore, while digital transformation offers efficiency and visibility, it also introduces new challenges and risks that require attentively ensured the global supply chain security and resiliency.

In this particular field of inquiry, there have been several literature reviews. The majority of these studies focused on the pros and cons of using digital supply network in several industries, including the food industry, and how to put them into practice (Subramaniyam et al., 2021), or a manufacturing company's supply chain and the possibilities and advantages of digitalization (Shah et al., 2023). Digital supply chain development, digitization, and technological implementation may be mapped out in literature studies as well (Büyüközkan & Göçer, 2018), in addition, digital supply chain maturity model may be used to create standards for the digital supply chain's implementation throughout the digital transformation process (Weerabahu et al., 2023). Digital supply chains increase global competitiveness, therefore this study focused on their pros and cons, especially given recent developments in global supply networks. Even though, there are a literature review studies that already provide the advantages, weaknesses, and emerging trends in the chain of digital supply research (Büyüközkan & Göçer, 2018; H. Zhang et al., 2024), This study examines how the digital supply chain fits within the global supply chain. The SCOR paradigm guides this examination of five dimensions: plan, source, make, deliver, and return.

Digital technologies implementation on supply chain not only offers several opportunities, such as improved efficiency, visibility, and collaboration, but also introduces another challenge that needs to be addressed, one of which is cyber security issue. Understanding the opportunities and challenges of the chain of digital supply could help companies to maximize the potential of the digital technologies, as well as provides the capability to anticipate, respond, and overcome the risks. By making the supply chain more resilient and sustainable, this will help the organization gain a competitive edge. Building a research and practice framework requires understanding digital supply chain potential and obstacles (Büyüközkan & Göçer, 2018). Thus, under these circumstances of the global supply chain, what are the advantages and disadvantages of digital supply chain?

758

2. RESEARCH METHODS

To better comprehend phenomena or social phenomena, this qualitative research intends to present a broader understanding of the phenomenon as a whole, rather than reducing it to its component parts. To reach this objective, a systematic literature review (SLR) following established guidelines introduced by (Tranfield et al., 2003) is performed. We collected articles from Scopus as it is one of the large literatures databases and the most relevant at the international level (Thelwall, 2018). Then, the SCOR model is being used as the content analysis framework to offer a thorough perspective of this research topic. The SCOR model has been employed in prior systematic literature reviews in the area of supply chain management (Chehbi-Gamoura et al., 2020; Kamble, Gunasekaran, & Gawankar, 2020).

The articles are collected from the Scopus database in June 2024 using the search string. The search string is developed by considering the keywords that being used in previous literature review studies in the chain of digital supply. The search string that is being used in this study is the terms similar with the chain of digital supply term, or the combination of "supply chain" term and the digital technologies that most frequently used or researched. Here is the full search string: ("digital supply chain" OR "smart supply chain" OR "intelligent supply chain" OR "supply chain 4.0") OR (blockchain OR "big data analytics" OR "additive manufacturing" OR "augmented reality" OR "artificial intelligence" OR "cloud computing" OR "internet of things") AND "supply chain").

Searching the abstract, title, and keyword fields, it initially produced 14244 articles in total. Next, researchers proceed with a three-step process to determine the most pertinent research for the ultimate evaluation. Initially, the papers undergo screening using Scopus filters, which include criteria such as language, document type, publishing stage, and open access. This process yields a cumulative of 2724 articles. During the second stage, the titles, keywords, and abstracts are carefully reviewed and evaluated. Excluded from consideration are literature review papers, as well as items that are not relevant to the specified keywords or desired goal. This process yields a total of 1317 articles. Finally, the whole texts of the remaining articles were then examined for content analysis. Full text screening eliminates publications that do not clearly demonstrate the advantages or difficulties of digital supply chain. The total number of articles that will undergo the content analysis procedure is 786.

3. RESULTS AND DISCUSSION

3.1. Research Results

Once completing the screening procedure, there are 786 selected literatures that would go through he content analysis procedure. Table 1 presents 100 examples of literature into each dimension of SCOR model. Literature could be categorized into two or more dimensions if it belongs to more than one dimension of SCOR model. Any literature that does not fully belong into any dimension is classified as "Overall" dimension.

759

Muhammad Saad Salahudin, Imam Baihaqi, Yen-Ching Liu

Table 1. Categorization of Selected Literature on SCOR Model Dimensions

	900008	01120		02 20			erature on SC	O = = = :				0 = = 0	
Author	Plan	Source	Make	Deliver	Return	Overall	Author	Plan	Source	Make	Deliver	Return	Overall
(Vinayavekhin et al., 2024)		V					(Xiao et al., 2021)			V			
(Bistarelli et al., 2023)				V			(W. Wang, 2024)				V		
(Salmi et al., 2020)			V				(Xiong et al., 2019)					V	
(Satzer & Achleitner, 2022)			V				(Y. M. Chen et al., 2023)						V
(Apruzzese et al., 2023)				V			(Cheng et al., 2011)	V					
(Liang et al., 2023)				V			(Montero et al., 2020)			V			
(Abbas et al., 2020)		V					(Kousiouris et al., 2019)					V	
(Zhu et al., 2020)				V			(Boza et al., 2014)				V		
(Figorilli et al., 2018)		V					(Giannakis & Louis, 2016)				V		
(Musamih et al., 2021)				V			(Gorecki et al., 2020)			V			
(Lamela et al., 2022)					V		(Hassouna et al., 2022)			V			
(Cuñat Negueroles et al., 2024)				V			(Scuotto et al., 2017)		V				
(Tan et al., 2020)					V		(Modares et al., 2023)		V		V		
(Cui et al., 2019)				V			(Kamran et al., 2023)		V				
(Isaja et al., 2023)			V				(Muafi & Sulistio, 2022)			V			
(Farooq et al., 2023)				V			(Jha et al., 2020)	V					
(Priyan, 2024)			V	V			(H. Zhang et al., 2023)			V			
(Hawashin et al., 2022)			V				(Toyoda et al., 2017)	V					

760

Author	Plan	Source	Make	Deliver	Return	Overall	Author	Plan	Source	Make	Deliver	Return	Overall
(Marchese & Tomarchio, 2022)		V					(Liao & Wang, 2019)				V		
(Y. Zhang et al., 2023)				V			(Boru et al., 2019)	V			V		
(Cocco et al., 2021)		V					(Jamil et al., 2019)	V					
(Al-Rakhami & Al-Mashari, 2021)		V					(Popović et al., 2021)				V		
(Bhatia & Albarrak, 2023)			V				(Ghasemi et al., 2023)				V		
(L'Hermitte & Nair, 2021)				V			(Hasan et al., 2023)				V		
(C. H. Wu et al., 2021)				V			(Ferdousi et al., 2020)		V				
(Jesse et al., 2023)					V		(Gayialis et al., 2022)					V	
(Nasereddin, 2024)	V	V	V	V			(Xia et al., 2020)		V				
(Shamout et al., 2022)				V			(Shahbazi & Byun, 2021)				V		
(Nayak & Dhaigude, 2019)						V	(Ouf, 2021)				V		
(Sitek et al., 2017)						V	(A. Tan & Ngan, 2020)				V		
(Verdouw et al., 2015)	V						(Xue & Li, 2023)				V		
(Cantini et al., 2024)			V				(Parker et al., 2019)			V			
(Ransikarbum et al., 2020)			V				(Gondal et al., 2023)				V		
(Kulkarni & Xu, 2021)			V				(Saban et al., 2023)			V			
(Makridis et al., 2023)	V	V					(Valencia- Payan et al., 2022)				V		
(Tang et al., 2023)			V				(Kaur et al., 2024)			V			

Muhammad Saad Salahudin, Imam Baihaqi, Yen-Ching Liu

Author	Plan	Source	Make	Deliver	Return	Overall	Author	Plan	Source	Make	Deliver	Return	Overall
(H. Wu et al., 2017)		V					(R. Abbas et al., 2022)						V
(Fernández- Caramés et al., 2018)				V			(Bataineh et al., 2022)		V				
(Guixia et al., 2024)				V			(Singh & Chaddah, 2021)				V		
(Viswanadham & Jayavel, 2023)			V				(Yoo & Won, 2018)	V					
(Kittipanya- ngam & Tan, 2020)						V	(Lin et al., 2022)						V
(Yong Chan et al., 2019)				V			(Helmi Ali et al., 2021)						V
(Feng et al., 2023)					V		(Angarita- Zapata et al., 2021)						V
(Violino et al., 2020)				V			(Tao et al., 2023)			V			
(Kumar et al., 2013)		V					(Liu et al., 2022)	V					
(Goodarzian et al., 2024)					V		(C. L. Chen et al., 2021)				V		
(El Midaoui et al., 2022)				V			(Malatji, 2024)				V		
(Qu et al., 2024)					V		(Jegan Joseph Jerome et al., 2024)	V					
(Della Valle & Oliver, 2021)			V				(Trabucco & De Giovanni, 2021)						V
(Mahroof, 2019)				V			(Alamsjah & Yunus, 2022)	V					

Figure 1 shows the number of literatures in each dimension. Based on that, deliver dimension has the most literatures with 235 literatures categorized in that dimension, and followed by make dimension with 207 literatures. It means that researchers have more focus and interest to study the digital supply chain role in those two dimensions, as well as become the common topics in this research area. Besides, from five dimensions in SCOR model, return dimension has the least literatures with only 90 literatures categorized in this

762 <u>https</u>

dimension. It means that research about digital supply chain in this dimension research on X can still be developed further.

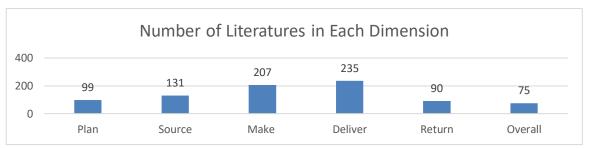


Figure 1. Number of Literatures in Each Dimension

4.2. Discussion

4.2.1. Plan Dimension

The challenges on plan dimension analysis state the effectiveness of digital technologies heavily relies on how thorough and accurate the training data is. As is known before, blockchain technology has several abilities, including privacy, openness, and auditability (L. Wang et al., 2022). Based on that, blockchain technology has the capability that should be able to be used to solve that problem. However, research about blockchain technology's role for demand forecasting and product development is still scarce. Therefore, future research should discuss the blockchain technology potential for maintaining quality and authenticity in demand forecasting and product development.

4.2.2. Source Dimension

Sustainable procurement is an important issue in this era. According to (Wilson et al., 2024), when it comes to sustainable procurement, material passports (MP) play a crucial role by documenting every product characteristic and procedure that it goes through in its supply network. An MP is essentially a record that records a product from its creation to when it is no longer needed. Although MPs have been helpful, one major challenge in achieving sustainability goals is the lack of uniform methodologies or standards. This inconsistency means that MPs use a lot of different jargon and processes, which can make them less useful for those outside the organization. Future research should focus on finding ways to standardize or integrate MPs, so businesses can better meet their long-term sustainability objectives.

4.2.3. Make Dimension

The utilization of digital technology in manufacturing is a popular topic within digital supply chains, particularly in industries such as textiles and fast-moving consumer goods (Kaur et al., 2024; Nozari, et al., 2021). The implementation of smart manufacturing and additive manufacturing has become a much-discussed matter. While several researchers have explored the potential applications of digital technology in service industries like healthcare and education (Mustaffa et al., 2023; Parker et al., 2019b), there are still a big room for improvement in this research area. Smart services and how they are adopted in the other service industry could be the topics that need to be developed. Therefore, future

Muhammad Saad Salahudin, Imam Baihaqi, Yen-Ching Liu

research could delve deeper into the implementation of digital technologies within the service industry.

4.2.4. Deliver Dimension

Cybersecurity becomes an important issue when companies try to adopt digital technologies. Cyber-attack targeting logistics based IoT data exchanges caused several threats and risks (Alzahrani & Asghar, 2024). As mentioned in the challenges on deliver dimension analysis, the complexity of detecting and mitigating these vulnerabilities is compounded by the heterogeneity of IoT devices and the volume of data generated. Despite blockchain's tamper-proof ledger, ensuring compliance with data privacy requirements and securing diverse and large volumes of sensitive information remain significant challenges (George & Al-Ansari, 2023). Thus, the scalability of digital technology solutions to handle those transactions efficiently is still an area that needs improvement.

4.2.5. Return Dimension

This research indicates that the return dimension has been the least investigated in studies. Even though sustainability aspect starting to gain digital supply chain literatures attention, there is still needs for empirical research of digital technology implementation in this dimension. This is because researchers only focus on certain industries which specifically revolve around CE or CLSC, such as agriculture industry, chemical industry, or resale industry (Gholipour et al., 2024; Monteiro et al., 2021; Shen et al., 2020). The implementation of CE or CLSC in the common industry, including manufacturing and service industry, could be a topic to study in the future. Additional technologies that might be explored in future studies to improve the literature on return dimensions include cloud computing, machine learning, and additive manufacturing.

4. CONCLUSION

A rising number of supply chains have integrated digital technologies into their system to achieve global competitiveness. Utilizing digital technologies has resulted in the future of SC control system which transform traditional supply chain to digital supply chain. This shifting towards chain of digital supply has several opportunities for companies to achieve sustainability and resilience supply chain, thus enhancing companies' performance and competitive advantage. However, some researchers have raised significant concerns about the global supply chain's reliance on digital technology. To address this, our research will explore the benefits and drawbacks of the chain of digital supply. We aim to understand both the opportunities and challenges that digital supply chains present in a global context and to outline a research objectives for future studies in this area.

This study undertaken systematic literature review through content analysis based on five dimensions in the SCOR model, which is plan, source, make, deliver, and return dimension. Plan dimension analysis focuses on digital supply chain opportunities and challenges in demand forecasting and product development, as well as how it has been implemented in industry. In source dimension, the analysis discusses digital supply chain opportunities and challenges in supplier selection and procurement processes, especially about how it mitigates the sustainability issues. The analysis about digital technologies

adoption to manufacturing system, maintenance management, scheduling and production control is described in make dimension. The analysis in deliver dimension highlights the digital supply chain opportunities and challenges in inventory management, transportation and logistics management, and also order management.

While in the return dimension, it explores digital technologies opportunities and challenges for CE or CLSC. Conversely, digital supply chain does come with its fair share of difficulties. Common problems with digital supply chains include a lack of infrastructure, policies, and coordination as well as financial, technical, and technological obstacles. This issue happens almost in every dimension of SCOR model. Cybersecurity and resistance to change issues also become another key challenge that need to be addressed. Lastly, through these analysis, the future research agenda can finally be drawn in this research.

REFERENCES

- Abbas, K., Afaq, M., Khan, T. A., & Song, W. C. (2020). A blockchain and machine learning-based drug supply chain management and recommendation system for smart pharmaceutical industry. Electronics (Switzerland), 9(5). https://doi.org/10.3390/electronics9050852
- Abbas, R., Amran, G. A., Hussain, I., & Ma, S. (2022). A Soft Computing View for the Scientific Categorization of Vegetable Supply Chain Issues. Logistics, 6(3). https://doi.org/10.3390/logistics6030039
- Agrawal, P., & Narain, R. (2018). Digital supply chain management: An Overview. IOP Materials Science and Engineering, Conference Series: 455, https://doi.org/10.1088/1757-899X/455/1/012074
- Alamsjah, F., & Yunus, E. N. (2022). Achieving Supply Chain 4.0 and the Importance of Agility, Ambidexterity, and Organizational Culture: A Case of Indonesia. Journal of Open Innovation: Technology, Market, and Complexity, 8(2). https://doi.org/10.3390/joitmc8020083
- Al-Rakhami, M. S., & Al-Mashari, M. (2021). A blockchain-based trust model for the internet of things supply chain management. Sensors. 21(5),1-15.https://doi.org/10.3390/s21051759
- Alzahrani, A., & Asghar, M. Z. (2024). Cyber vulnerabilities detection system in logisticsdata exchange. Egyptian Informatics Journal. https://doi.org/10.1016/j.eij.2024.100448
- Angarita-Zapata, J. S., Alonso-Vicario, A., Masegosa, A. D., & Legarda, J. (2021). A taxonomy of food supply chain problems from a computational intelligence perspective. Sensors, 21(20). https://doi.org/10.3390/s21206910
- Apruzzese, M., Bruni, M. E., Musso, S., & Perboli, G. (2023). 5G and Companion Technologies as a Boost in New Business Models for Logistics and Supply Chain. Sustainability (Switzerland), 15(15). https://doi.org/10.3390/su151511846
- Banerjee, A., Lücker, F., & Ries, J. M. (2021). An empirical analysis of suppliers' trade-off behaviour in adopting digital supply chain financing solutions. International Journal **Operations** & Production Management, 41(4), 313-335. https://doi.org/10.1108/IJOPM-07-2020-0495

Muhammad Saad Salahudin, Imam Baihaqi, Yen-Ching Liu

- Bataineh, A. Q., Abu-Alsondos, I., Salhab, H. A., & Al-Abbas, L. S. (2022). A structural equation model for analyzing the relationship between enterprise resource planning and digital supply chain management. Uncertain Supply Chain Management, 10(4), 1289–1296. https://doi.org/10.5267/j.uscm.2022.7.011
- Bhatia, S., & Albarrak, A. S. (2023). A Blockchain-Driven Food Supply Chain Management Using QR Code and XAI-Faster RCNN Architecture. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032579
- Bistarelli, S., Faloci, F., & Mori, P. (2023). *-chain: A framework for automating the modeling of blockchain based supply chain tracing systems. Future Generation Computer Systems, 149, 679–700. https://doi.org/10.1016/j.future.2023.07.012
- Boru, A., Dosdoğru, A. T., Göçken, M., & Erol, R. (2019). A novel hybrid artificial intelligence based methodology for the inventory routing problem. Symmetry, 11(5). https://doi.org/10.3390/sym11050717
- Boza, A., Alemany, M. M. E., Alarcón, F., & Cuenca, L. (2014). A model-driven DSS architecture for delivery management in collaborative supply chains with lack of homogeneity in products. Production Planning and Control, 25(8), 650–661. https://doi.org/10.1080/09537287.2013.798085
- Büyüközkan, G., & Göçer, F. (2018). Digital Supply Chain: Literature review and a proposed framework for future research. Computers in Industry, 97, 157–177. https://doi.org/10.1016/j.compind.2018.02.010
- Caniato, F., Golini, R., & Kalchschmidt, M. (2013). The effect of global supply chain configuration on the relationship between supply chain improvement programs and performance. International Journal of Production Economics, 143(2), 285–293. https://doi.org/10.1016/j.ijpe.2012.05.019
- Cantini, A., Peron, M., De Carlo, F., & Sgarbossa, F. (2024). A decision support system for configuring spare parts supply chains considering different manufacturing technologies. International Journal of Production Research, 62(8), 3023–3043. https://doi.org/10.1080/00207543.2022.2041757
- Chehbi-Gamoura, S., Derrouiche, R., Damand, D., & Barth, M. (2020). Insights from big Data Analytics in supply chain management: an all-inclusive literature review using the SCOR model. Production Planning and Control, 31(5), 355–382. https://doi.org/10.1080/09537287.2019.1639839
- Chen, C. L., Chiang, M. L., Deng, Y. Y., Weng, W., Wang, K., & Liu, C. C. (2021). A traceable firearm management system based on blockchain and iot technology. Symmetry, 13(3). https://doi.org/10.3390/sym13030439
- Chen, Y. M., Chen, T. Y., & Li, J. S. (2023). A Machine Learning-Based Anomaly Detection Method and Blockchain-Based Secure Protection Technology in Collaborative Food Supply Chain. International Journal of E-Collaboration, 19(1). https://doi.org/10.4018/IJeC.315789
- Cheng, F., Yang, S. L., Akella, R., & Tang, & X. T. (2011). A Meta-Modelling Service Paradigm For Cloud Computing And Its Implementation. In South African Journal of Industrial Engineering (Vol. 22, Issue 2). http://sajie.journals.ac.za
- Chopra, S., & Meindl, P. (2016). Supply Chain Management: Strategy, Planning, and Operation (6th ed.). Pearson Education.
- Christopher, M. (2016). Logistics and Supply Chain Management (5th ed.). Pearson

- Education.
- Cocco, L., Mannaro, K., Tonelli, R., Mariani, L., Lodi, M. B., Melis, A., Simone, M., & Fanti, A. (2021). A Blockchain-Based Traceability System in Agri-Food SME: Case Study of a Traditional Bakery. IEEE Access, 9, 62899–62915. https://doi.org/10.1109/ACCESS.2021.3074874
- Cui, P., Dixon, J., Guin, U., & Dimase, D. (2019). A Blockchain-Based Framework for Supply Chain Provenance. IEEE Access, 7, 157113–157125. https://doi.org/10.1109/ACCESS.2019.2949951
- Cuñat Negueroles, S., Reinosa Simón, R., Julián, M., Belsa, A., Lacalle, I., S-Julián, R., & Palau, C. E. (2024). A Blockchain-based Digital Twin for IoT deployments in logistics and transportation. Future Generation Computer Systems, 158, 73–88. https://doi.org/10.1016/j.future.2024.04.011
- Della Valle, F., & Oliver, M. (2021). A guidance for blockchain-based digital transition in supply chains. Applied Sciences (Switzerland), 11(14). https://doi.org/10.3390/app11146523
- El Midaoui, M., Qbadou, M., & Mansouri, K. (2022). A fuzzy-based prediction approach for blood delivery using machine learning and genetic algorithm. International Journal of Electrical and Computer Engineering, 12(1), 1056–1068. https://doi.org/10.11591/ijece.v12i1.pp1056-1068
- Farooq, M. S., Riaz, S., Rehman, I. U., Khan, M. A., & Hassan, B. (2023). A Blockchain-Based Framework to Make the Rice Crop Supply Chain Transparent and Reliable in Agriculture. Systems, 11(9). https://doi.org/10.3390/systems11090476
- Feng, Z., Li, W., Zhang, H., & Zhang, X. (2023). A Framework of a Blockchain-Supported Remanufacturing Trading Platform through Gap Analysis. Sustainability (Switzerland), 15(16). https://doi.org/10.3390/su151612120
- Ferdousi, T., Gruenbacher, D., & Scoglio, C. M. (2020). A Permissioned Distributed Ledger for the US Beef Cattle Supply Chain. IEEE Access, 8, 154833–154847. https://doi.org/10.1109/ACCESS.2020.3019000
- Fernández-Caramés, T. M., Fraga-Lamas, P., Suárez-Albela, M., & Díaz-Bouza, M. A. (2018). A fog computing based cyber-physical system for the automation of piperelated tasks in the industry 4.0 shipyard. Sensors (Switzerland), 18(6). https://doi.org/10.3390/s18061961
- Figorilli, S., Antonucci, F., Costa, C., Pallottino, F., Raso, L., Castiglione, M., Pinci, E., Del Vecchio, D., Colle, G., Proto, A. R., Sperandio, G., & Menesatti, P. (2018). A blockchain implementation prototype for the electronic open source traceability of wood along the whole supply chain. Sensors (Switzerland), 18(9). https://doi.org/10.3390/s18093133
- Gayialis, S. P., Kechagias, E. P., Konstantakopoulos, G. D., & Papadopoulos, G. A. (2022). A Predictive Maintenance System for Reverse Supply Chain Operations. Logistics, 6(1). https://doi.org/10.3390/logistics6010004
- George, W., & Al-Ansari, T. (2023). GM-Ledger: Blockchain-Based Certificate Authentication for International Food Trade. Foods, 12(21). https://doi.org/10.3390/foods12213914
- Gereffi, G., & Lee, J. (2016). Economic and Social Upgrading in Global Value Chains and Industrial Clusters: Why Governance Matters. Journal of Business Ethics, 133(1), 25–

767

Muhammad Saad Salahudin, Imam Baihaqi, Yen-Ching Liu

- 38. https://doi.org/10.1007/s10551-014-2373-7
- Ghasemi, R., Akhavan, P., Abbasi, M., & Valilai, O. F. (2023). A Novel Supplier-Managed Inventory Order Assignment Platform Enabled by Blockchain Technology. IEEE Access, 11, 140763–140773. https://doi.org/10.1109/ACCESS.2023.3341361
- Gholipour, A., Sadegheih, A., Mostafaeipour, A., & Fakhrzad, M. B. (2024). Designing an optimal multi-objective model for a sustainable closed-loop supply chain: a case study of pomegranate in Iran. Environment, Development and Sustainability, 26(2), 3993–4027. https://doi.org/10.1007/s10668-022-02868-5
- Giannakis, M., & Louis, M. (2016). A multi-agent based system with big data processing for enhanced supply chain agility. Journal of Enterprise Information Management, 29(5), 706–727. https://doi.org/10.1108/JEIM-06-2015-0050
- Gondal, M. U. A., Khan, M. A., Haseeb, A., Albarakati, H. M., & Shabaz, M. (2023). A secure food supply chain solution: blockchain and IoT-enabled container to enhance the efficiency of shipment for strawberry supply chain. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1294829
- Goodarzian, F., Ghasemi, P., Gunasekaran, A., & Labib, A. (2024). A fuzzy sustainable model for COVID-19 medical waste supply chain network. Fuzzy Optimization and Decision Making, 23(1), 93–127. https://doi.org/10.1007/s10700-023-09412-8
- Gorecki, S., Possik, J., Zacharewicz, G., Ducq, Y., & Perry, N. (2020). A multicomponent distributed framework for smart production system modeling and simulation. Sustainability (Switzerland), 12(17). https://doi.org/10.3390/SU12176969
- Guixia, X., Samian, N., Mohd Faizal, M. F., Mohd As'Ad, M. A. Z., Mohamad Fadzil, M. F., Abdullah, A., Seah, W. K. G., Ishak, M., & Hermadi, I. (2024). A Framework for Blockchain and Internet of Things Integration in Improving Food Security in the Food Supply Chain. Journal of Advanced Research in Applied Sciences and Engineering Technology, 34(1), 24–37. https://doi.org/10.37934/araset.34.1.2437
- Gupya, O. (2023). Digital Transformation in Supply Chain India: Challenges and Opportunities. PsychologyandEducation, https://doi.org/10.48047/pne.2018.55.1.52
- Hartley, J. L., & Sawaya, W. J. (2019). Tortoise, not the hare: Digital transformation of supply chain business processes. Business Horizons, 62(6), 707–715. https://doi.org/10.1016/j.bushor.2019.07.006
- Hasan, A. S. M. T., Sabah, S., Daria, A., & Haque, R. U. (2023). A peer-to-peer blockchain-based architecture for trusted and reliable agricultural product traceability. Decision Analytics Journal, 9. https://doi.org/10.1016/j.dajour.2023.100363
- Hassouna, M., El-Henawy, I., & Haggag, R. (n.d.). A Multi-Objective Optimization for Supply Chain Management using Artificial Intelligence (AI). In IJACSA) International Journal of Advanced Computer Science and Applications (Vol. 13, Issue 8). www.ijacsa.thesai.org
- Hawashin, D., Salah, K., Jayaraman, R., Yaqoob, I., & Musamih, A. (2022). A Blockchain-Based Solution for Mitigating Overproduction and Underconsumption of Medical Supplies. IEEE Access, 10, 71669–71682. https://doi.org/10.1109/ACCESS.2022.3188778
- Helmi Ali, M., Chung, L., Kumar, A., Zailani, S., & Hua Tan, K. (2021). A Sustainable Blockchain Framework for the Halal Food Supply Chain: Lessons from Malaysia.

- Hugos, M. (2018). Essentials of Supply Chain Management (4th ed.). John Wiley & Sons, Inc.
- Hülsmann, M., Grapp, J., & Li, Y. (2008). Strategic adaptivity in global supply chains— Competitive advantage by autonomous cooperation. International Journal of Production Economics, 114(1), 14–26. https://doi.org/10.1016/j.ijpe.2007.09.009
- Isaja, M., Nguyen, P., Goknil, A., Sen, S., Husom, E. J., Tverdal, S., Anand, A., Jiang, Y., Pedersen, K. J., Myrseth, P., Stang, J., Niavis, H., Pfeifhofer, S., & Lamplmair, P. (2023). A blockchain-based framework for trusted quality data sharing towards zero-defect manufacturing. Computers in Industry, 146. https://doi.org/10.1016/j.compind.2023.103853
- Ivanov, D. (2024). Digital Supply Chain Management and Technology to Enhance Resilience by Building and Using End-to-End Visibility During the COVID-19 Pandemic. IEEE Transactions on Engineering Management, 1–11. https://doi.org/10.1109/TEM.2021.3095193
- Jabbar, S., Lloyd, H., Hammoudeh, M., Adebisi, B., & Raza, U. (2021). Blockchain-enabled supply chain: analysis, challenges, and future directions. Multimedia Systems, 27(4), 787–806. https://doi.org/10.1007/s00530-020-00687-0
- Jamil, F., Hang, L., Kim, K. H., & Kim, D. H. (2019). A novel medical blockchain model for drug supply chain integrity management in a smart hospital. Electronics (Switzerland), 8(5). https://doi.org/10.3390/electronics8050505
- Jegan Joseph Jerome, J., Sonwaney, V., Bryde, D., & Graham, G. (2024). Achieving competitive advantage through technology-driven proactive supply chain risk management: an empirical study. Annals of Operations Research, 332(1–3), 149–190. https://doi.org/10.1007/s10479-023-05604-y
- Jesse, F. F., Antonini, C., & Luque-Vilchez, M. (2023). A circularity accounting network: CO2 measurement along supply chains using machine learning. Revista de Contabilidad-Spanish Accounting Review, 26(Special Issue), 21–33. https://doi.org/10.6018/RCSAR.564901
- Jha, A. K., Agi, M. A. N., & Ngai, E. W. T. (2020). A note on big data analytics capability development in supply chain. Decision Support Systems, 138. https://doi.org/10.1016/j.dss.2020.113382
- Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. In International Journal of Production Economics (Vol. 219, pp. 179–194). Elsevier B.V. https://doi.org/10.1016/j.ijpe.2019.05.022
- Kamble, S. S., Gunasekaran, A., Ghadge, A., & Raut, R. (2020). A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs-A review and empirical investigation. International Journal of Production Economics, 229, 107853. https://doi.org/10.1016/j.ijpe.2020.107853
- Kamran, M. A., Kia, R., Goodarzian, F., & Ghasemi, P. (2023). A new vaccine supply chain network under COVID-19 conditions considering system dynamic: Artificial intelligence algorithms. Socio-Economic Planning Sciences, 85. https://doi.org/10.1016/j.seps.2022.101378
- Kaur, G., Dey, B. K., Pandey, P., Majumder, A., & Gupta, S. (2024). A Smart Manufacturing Process for Textile Industry Automation under Uncertainties. Processes, 12(4).

https://transpublika.co.id/ojs/index.php/Transekonomika

Muhammad Saad Salahudin, Imam Baihaqi, Yen-Ching Liu

- https://doi.org/10.3390/pr12040778
- Kittipanya-ngam, P., & Tan, K. H. (2020). A framework for food supply chain digitalization: lessons from Thailand. Production Planning and Control, 31(2–3), 158–172. https://doi.org/10.1080/09537287.2019.1631462
- Kousiouris, G., Tsarsitalidis, S., Psomakelis, E., Koloniaris, S., Bardaki, C., Tserpes, K., Nikolaidou, M., & Anagnostopoulos, D. (2019). A microservice-based framework for integrating IoT management platforms, semantic and AI services for supply chain management. ICT Express, 5(2), 141–145. https://doi.org/10.1016/j.icte.2019.04.002
- Kulkarni, A., & Xu, C. (2021). A Deep Learning Approach in Optical Inspection to Detect Hidden Hardware Trojans and Secure Cybersecurity in Electronics Manufacturing Supply Chains. Frontiers in Mechanical Engineering, 7. https://doi.org/10.3389/fmech.2021.709924
- Kumar, D., Singh, J., Singh, O. P., & Seema. (2013). A fuzzy logic based decision support system for evaluation of suppliers in supply chain management practices. Mathematical and Computer Modelling, 58(11–12), 1679–1695. https://doi.org/10.1016/j.mcm.2013.07.003
- Lamela, M. P., Rodriguez-Molina, J., Martinez-Nunez, M., & Garbajosa, J. (2022). A Blockchain-Based Decentralized Marketplace for Trustworthy Trade in Developing Countries. IEEE Access, 10, 79100–79123. https://doi.org/10.1109/ACCESS.2022.3194511
- L'Hermitte, C., & Nair, N. K. C. (2021). A blockchain-enabled framework for sharing logistics resources during emergency operations. Disasters, 45(3), 527–554. https://doi.org/10.1111/disa.12436
- Li, Q., Zhang, H., Liu, K., Zhang, Z. J., & Jasimuddin, S. M. (2023). Linkage between digital supply chain, supply chain innovation and supply chain dynamic capabilities: an empirical study. The International Journal of Logistics Management. https://doi.org/10.1108/IJLM-01-2022-0009
- Liang, W., Zhang, L., & Kadoch, M. (2023). 6G IoT Tracking- and Machine Learning-Enhanced Blockchained Supply Chain Management. Electronics (Switzerland), 12(1). https://doi.org/10.3390/electronics12010040
- Liao, W., & Wang, T. (2019). A novel collaborative optimization model for job shop production-delivery considering time window and carbon emission. Sustainability (Switzerland), 11(10). https://doi.org/10.3390/su11102781
- Lin, S. Y., Zhang, L., Li, J., Ji, L. li, & Sun, Y. (2022). A survey of application research based on blockchain smart contract. Wireless Networks, 28(2), 635–690. https://doi.org/10.1007/s11276-021-02874-x
- Liu, W., Liang, Y., Lim, M. K., Long, S., & Shi, X. (2022). A theoretical framework of smart supply chain innovation for going global companies: a multi-case study from China. International Journal of Logistics Management, 33(3), 1090–1113. https://doi.org/10.1108/IJLM-10-2020-0388
- Mahroof, K. (2019). A human-centric perspective exploring the readiness towards smart warehousing: The case of a large retail distribution warehouse. International Journal of Information Management, 45, 176–190. https://doi.org/10.1016/j.ijinfomgt.2018.11.008
- Makridis, G., Mavrepis, P., & Kyriazis, D. (2023). A deep learning approach using natural

- language processing and time-series forecasting towards enhanced food safety. Machine Learning, 112(4), 1287–1313. https://doi.org/10.1007/s10994-022-06151-6
- Malatji, M. (2024). Accelerating the African continental free trade area through optimization of digital supply chains. Engineering Reports, 6(2). https://doi.org/10.1002/eng2.12711
- Marchese, A., & Tomarchio, O. (2022). A Blockchain-Based System for Agri-Food Supply Chain Traceability Management. SN Computer Science, 3(4). https://doi.org/10.1007/s42979-022-01148-3
- Modares, A., Kazemi, M., Emroozi, V. B., & Roozkhosh, P. (2023). A New Supply Chain Design To Solve Supplier Selection Based On Internet Of Things And Delivery Reliability. Journal of Industrial and Management Optimization, 19(11), 7993–8028. https://doi.org/10.3934/jimo.2023028
- Monteiro, E. S., Righi, R. da R., Barbosa, J. L. V., & Alberti, A. M. (2021). APTM: A model for pervasive traceability of agrochemicals. Applied Sciences (Switzerland), 11(17). https://doi.org/10.3390/app11178149
- Montero, J., Weber, S., Bleckmann, M., & Paetzold, K. (2020). A methodology for the decentralised design and production of additive manufactured spare parts. Production and Manufacturing Research, 8(1), 313–334. https://doi.org/10.1080/21693277.2020.1790437
- Muafi, M., & Sulistio, J. (2022). A Nexus Between Green Intelectual Capital, Supply Chain Integration, Digital Supply Chain, Supply Chain Agility, and Business Performance. Journal of Industrial Engineering and Management, 15(2), 275–295. https://doi.org/10.3926/jiem.3831
- Mukherjee, P. (2017, March 15). Being an integral part of global supply chains: 'People power' from innovation to expertise is what counts.
- Musamih, A., Salah, K., Jayaraman, R., Arshad, J., Debe, M., Al-Hammadi, Y., & Ellahham, S. (2021). A blockchain-based approach for drug traceability in healthcare supply chain. IEEE Access, 9, 9728–9743. https://doi.org/10.1109/ACCESS.2021.3049920
- Mustaffa, N. A., Zulkifli, M., & Khan, M. H. (2023). DSC Index Measuring the Digital Supply Chain Practice among the Higher EducationInstitutions Community in Least DevelopedCountries.
- Nasereddin, A. Y. (2024). A comprehensive survey of contemporary supply chain management practices in charting the digital age revolution. Uncertain Supply Chain Management, 12(2), 1331–1352. https://doi.org/10.5267/j.uscm.2023.11.004
- Nayak, G., & Dhaigude, A. S. (2019). A conceptual model of sustainable supply chain management in small and medium enterprises using blockchain technology. Cogent Economics and Finance, 7(1). https://doi.org/10.1080/23322039.2019.1667184
- Nozari, H., Fallah, M., Szmelter-Jarosz, A., & Krzemiński, M. (2021). Analysis of Security Criteria for IoT-Based Supply Chain: A Case Study of FMCG Industries. Central European Management Journal, 29(4), 149–171. https://doi.org/10.7206/cemj.2658-0845.63
- Nozari, H., Szmelter-Jarosz, A., & Ghahremani-Nahr, J. (2022). Analysis of the Challenges of Artificial Intelligence of Things (AIoT) for the Smart Supply Chain (Case Study: FMCG Industries). Sensors, 22(8), 2931. https://doi.org/10.3390/s22082931
- Ouf, S. (2021). A Proposed Architecture for Pharmaceutical Supply Chain Based Semantic

771

Muhammad Saad Salahudin, Imam Baihagi, Yen-Ching Liu

- Blockchain. International Journal of Intelligent Engineering and Systems, 14(3), 31–42. https://doi.org/10.22266/ijies2021.0630.04
- Parker, D. J., Nuttall, G. H., Bray, N., Hugill, T., Martinez-Santos, A., Edwards, R. T., & Nester, C. (2019). A randomised controlled trial and cost-consequence analysis of traditional and digital foot orthoses supply chains in a National Health Service setting: Application to feet at risk of diabetic plantar ulceration. Journal of Foot and Ankle Research, 12(1). https://doi.org/10.1186/s13047-018-0311-0
- Popović, T., Krčo, S., Maraš, V., Hakola, L., Radonjić, S., van Kranenburg, R., & Šandi, S. (2021). A novel solution for counterfeit prevention in the wine industry based on IoT, smart tags, and crowd-sourced information. Internet of Things (Netherlands), 14. https://doi.org/10.1016/j.iot.2021.100375
- Priyan, S. (2024). A blockchain-based inventory system with lot size-dependent lead times and uncertain carbon footprints. International Journal of Information Management Data Insights, 4(1). https://doi.org/10.1016/j.jjimei.2024.100225
- Qu, M., Xu, T., & Ju, C. (2024). A Green Supply Chain Management Strategy for E-Commerce Based on Multiple Blockchain Technology. Applied Mathematics and Nonlinear Sciences, 9(1). https://doi.org/10.2478/amns.2023.2.00450
- Queiroz, M. M., Pereira, S. C. F., Telles, R., & Machado, M. C. (2021). Industry 4.0 and digital supply chain capabilities. Benchmarking: An International Journal, 28(5), 1761–1782. https://doi.org/10.1108/BIJ-12-2018-0435
- Raj, A., Dwivedi, G., Sharma, A., Lopes de Sousa Jabbour, A. B., & Rajak, S. (2020). Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics, 224, 107546. https://doi.org/10.1016/j.ijpe.2019.107546
- Rajput, S., & Singh, S. P. (2019). Identifying Industry 4.0 IoT enablers by integrated PCA-ISM-DEMATEL approach. Management Decision, 57(8), 1784–1817. https://doi.org/10.1108/MD-04-2018-0378
- Ramanathan, K., & Samaranayake, P. (2022). Assessing Industry 4.0 readiness in manufacturing: a self-diagnostic framework and an illustrative case study. Journal of Manufacturing Technology Management, 33(3), 468–488. https://doi.org/10.1108/JMTM-09-2021-0339
- Ransikarbum, K., Pitakaso, R., & Kim, N. (2020). A decision-support model for additive manufacturing scheduling using an integrative analytic hierarchy process and multi-objective optimization. Applied Sciences (Switzerland), 10(15). https://doi.org/10.3390/app10155159
- Saban, M., Bekkour, M., Amdaouch, I., El Gueri, J., Ait Ahmed, B., Chaari, M. Z., Ruiz-Alzola, J., Rosado-Muñoz, A., & Aghzout, O. (2023). A Smart Agricultural System Based on PLC and a Cloud Computing Web Application Using LoRa and LoRaWan. Sensors, 23(5). https://doi.org/10.3390/s23052725
- Salmi, M., Akmal, J. S., Pei, E., Wolff, J., Jaribion, A., & Khajavi, S. H. (2020). 3D printing in COVID-19: Productivity estimation of the most promising open source solutions in emergency situations. Applied Sciences (Switzerland), 10(11). https://doi.org/10.3390/app10114004
- Santos, R. C., & Martinho, J. L. (2019). An Industry 4.0 maturity model proposal. Journal of Manufacturing Technology Management, 31(5), 1023–1043.

- https://doi.org/10.1108/JMTM-09-2018-0284
- Satzer, P., & Achleitner, L. (2022). 3D printing: Economical and supply chain independent single-use plasticware for cell culture. New Biotechnology, 69, 55–61. https://doi.org/10.1016/j.nbt.2022.03.002
- Schumacher, A., Erol, S., & Sihn, W. (2016). A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises. Procedia CIRP, 52, 161–166. https://doi.org/10.1016/j.procir.2016.07.040
- Scuotto, V., Caputo, F., Villasalero, M., & Del Giudice, M. (2017). A multiple buyer—supplier relationship in the context of SMEs' digital supply chain management*. Production Planning and Control, 28(16), 1378–1388. https://doi.org/10.1080/09537287.2017.1375149
- Shah, J. K., Sharma, M., & Joshi, S. (2023). Digital supply chain management: A comprehensive review using cluster analysis, with future directions and open challenges. International Journal of Supply and Operations Management, 10(3), 337–364. https://doi.org/10.22034/ijsom.2023.109914.2739
- Shahbazi, Z., & Byun, Y. C. (2021). A procedure for tracing supply chains for perishable food based on blockchain, machine learning and fuzzy logic. Electronics (Switzerland), 10(1), 1–21. https://doi.org/10.3390/electronics10010041
- Shamout, M., Ben-Abdallah, R., Alshurideh, M., Alzoubi, H., Al Kurdi, B., & Hamadneh, S. (2022). A conceptual model for the adoption of autonomous robots in supply chain and logistics industry. Uncertain Supply Chain Management, 10(2), 577–592. https://doi.org/10.5267/j.uscm.2021.11.006
- Shen, B., Xu, X., & Yuan, Q. (2020). Selling secondhand products through an online platform with blockchain. Transportation Research Part E: Logistics and Transportation Review, 142. https://doi.org/10.1016/j.tre.2020.102066
- Singh, D., & Chaddah, J. K. (2021). A study on application of blockchain technology to control counterfeit drugs, enhance data privacy and improve distribution in online pharmacy. Asia Pacific Journal of Health Management, 16(3). https://doi.org/10.24083/apjhm.v16i3.1013
- Sitek, P., Wikarek, J., & Nielsen, P. (2017). A constraint-driven approach to food supply chain management. Industrial Management and Data Systems, 117(9), 2115–2138. https://doi.org/10.1108/IMDS-10-2016-0465
- Stentoft, J., Adsbøll Wickstrøm, K., Philipsen, K., & Haug, A. (2021). Drivers and barriers for Industry 4.0 readiness and practice: empirical evidence from small and medium-sized manufacturers. Production Planning & Control, 32(10), 811–828. https://doi.org/10.1080/09537287.2020.1768318
- Subramaniyam, M., Halim-Lim, S. A., Mohamad, S. F. B., & Priyono, A. (2021). Digital Supply Chain in the Food Industry: Critical Success Factors and Barriers. 2021 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2021, 404–410. https://doi.org/10.1109/IEEM50564.2021.9672606
- Tan, A., & Ngan, P. T. (2020). A proposed framework model for dairy supply chain traceability. Sustainable Futures, 2. https://doi.org/10.1016/j.sftr.2020.100034
- Tan, B. Q., Wang, F., Liu, J., Kang, K., & Costa, F. (2020). A blockchain-based framework for green logistics in supply chains. Sustainability (Switzerland), 12(11). https://doi.org/10.3390/su12114656

Muhammad Saad Salahudin, Imam Baihaqi, Yen-Ching Liu

- Tang, Q., Wu, B., Chen, W., & Yue, J. (2023). A Digital Twin-Assisted Collaborative Capability Optimization Model for Smart Manufacturing System Based on Elman-IVIF-TOPSIS. IEEE Access, 11, 40540–40564. https://doi.org/10.1109/ACCESS.2023.3269577
- Tao, Q., Cai, Z., & Cui, X. (2023). A technological quality control system for rice supply chain. Food and Energy Security, 12(2). https://doi.org/10.1002/fes3.382
- Thelwall, M. (2018). Dimensions: A competitor to Scopus and the Web of Science? Journal of Informetrics, 12(2), 430–435. https://doi.org/10.1016/j.joi.2018.03.006
- Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What does Industry 4.0 mean to Supply Chain? Procedia Manufacturing, 13, 1175–1182. https://doi.org/10.1016/j.promfg.2017.09.191
- Toyoda, K., Takis Mathiopoulos, P., Sasase, I., & Ohtsuki, T. (2017). A Novel Blockchain-Based Product Ownership Management System (POMS) for Anti-Counterfeits in the Post Supply Chain. IEEE Access, 5, 17465–17477. https://doi.org/10.1109/ACCESS.2017.2720760
- Trabucco, M., & De Giovanni, P. (2021). Achieving resilience and business sustainability during COVID-19: The role of lean supply chain practices and digitalization. Sustainability (Switzerland), 13(22). https://doi.org/10.3390/su132212369
- Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375
- Valencia-Payan, C., Grass-Ramirez, J. F., Ramirez-Gonzalez, G., & Corrales, J. C. (2022). A Smart Contract for Coffee Transport and Storage With Data Validation. IEEE Access, 10, 37857–37869. https://doi.org/10.1109/ACCESS.2022.3165087
- Verdouw, C. N., Beulens, A. J. M., Reijers, H. A., & Van Der Vorst, J. G. A. J. (2015). A control model for object virtualization in supply chain management. Computers in Industry, 68, 116–131. https://doi.org/10.1016/j.compind.2014.12.011
- Vinayavekhin, S., Banerjee, A., & Li, F. (2024). "Putting your money where your mouth is": An empirical study on buyers' preferences and willingness to pay for blockchainenabled sustainable supply chain transparency. Journal of Purchasing and Supply Management. https://doi.org/10.1016/j.pursup.2024.100900
- Violino, S., Pallottino, F., Sperandio, G., Figorilli, S., Ortenzi, L., Tocci, F., Vasta, S., Imperi, G., & Costa, C. (2020). A full technological traceability system for extra virgin olive oil. Foods, 9(5). https://doi.org/10.3390/foods9050624
- Viswanadham, Y. V. R. S., & Jayavel, K. (2023). A Framework for Data Privacy Preserving in Supply Chain Management Using Hybrid Meta-Heuristic Algorithm with Ethereum Blockchain Technology. Electronics (Switzerland), 12(6). https://doi.org/10.3390/electronics12061404
- Wang, L., He, Y., & Wu, Z. (2022). Design of a Blockchain-Enabled Traceability System Framework for Food Supply Chains. Foods, 11(5). https://doi.org/10.3390/foods11050744
- Wang, W. (2024). A IoT-Based Framework for Cross-Border E-Commerce Supply Chain Using Machine Learning and Optimization. IEEE Access, 12, 1852–1864. https://doi.org/10.1109/ACCESS.2023.3347452
- Weerabahu, W. M. S. K., Samaranayake, P., Nakandala, D., & Hurriyet, H. (2023). Digital

- supply chain research trends: a systematic review and a maturity model for adoption. In Benchmarking (Vol. 30, Issue 9, pp. 3040–3066). Emerald Publishing. https://doi.org/10.1108/BIJ-12-2021-0782
- Wilson, S., Adu-Duodu, K., Li, Y., Sham, R., Almubarak, M., Wang, Y., Solaiman, E., Perera, C., Ranjan, R., & Rana, O. (2024). Blockchain-Enabled Provenance Tracking for Sustainable Material Reuse in Construction Supply Chains †. Future Internet, 16(4). https://doi.org/10.3390/fi16040135
- Wu, C. H., Tsang, Y. P., Lee, C. K. M., & Ching, W. K. (2021). A blockchain-iot platform for the smart pallet pooling management. Sensors, 21(18). https://doi.org/10.3390/s21186310
- Wu, H., Li, Z., King, B., Miled, Z. Ben, Wassick, J., & Tazelaar, J. (2017). A distributed ledger for supply chain physical distribution visibility. Information (Switzerland), 8(4). https://doi.org/10.3390/info8040137
- Xia, W., Li, B., & Yin, S. (2020). A prescription for urban sustainability transitions in China: Innovative partner selection management of green building materials industry in an integrated supply chain. Sustainability (Switzerland), 12(7). https://doi.org/10.3390/su12072581
- Xiao, R., Zhang, Y., Cui, X. H., Zhang, F., & Wang, H. H. (2021). A hybrid task crash recovery solution for edge computing in IoT-based manufacturing. IEEE Access, 9, 106220–106231. https://doi.org/10.1109/ACCESS.2021.3068471
- Xiong, F., Xiao, R., Ren, W., Zheng, R., & Jiang, J. (2019). A key protection scheme based on secret sharing for blockchain-based construction supply chain system. IEEE Access, 7, 126773–126786. https://doi.org/10.1109/ACCESS.2019.2937917
- Xue, F., & Li, F. (2023). A Quality Traceability System for Fruit and Vegetable Supply Chain Based on Multi-Chain Blockchain. International Journal of Information Systems and Supply Chain Management, 16(1). https://doi.org/10.4018/IJISSCM.330681
- Yong Chan, K., Abdullah, J., & Shahid Khan, A. (2019). A Framework for Traceable and Transparent Supply Chain Management for Agri-food Sector in Malaysia using Blockchain Technology. In IJACSA) International Journal of Advanced Computer Science and Applications (Vol. 10, Issue 11). www.ijacsa.thesai.org
- Yoo, M., & Won, Y. (2018). A study on the transparent price tracing system in supply chain management based on blockchain. Sustainability (Switzerland), 10(11). https://doi.org/10.3390/su10114037
- Zekhnini, K., Cherrafi, A., Bouhaddou, I., Benghabrit, Y., & Garza-Reyes, J. A. (2020). Supply chain management 4.0: a literature review and research framework. Benchmarking: An International Journal, 28(2), 465–501. https://doi.org/10.1108/BIJ-04-2020-0156
- Zhang, H., Lv, Y., Zhang, S., & Liu, Y. D. (2024). Digital Supply Chain Management: A Review and Bibliometric Analysis. Journal of Global Information Management, 32(1). https://doi.org/10.4018/JGIM.336285
- Zhang, H., Yan, Q., Qin, Y., Chen, S., & Zhang, G. (2023). A Novel Approach of Resource Allocation for Distributed Digital Twin Shop-Floor. Information (Switzerland), 14(8). https://doi.org/10.3390/info14080458
- Zhang, Y., Wu, X., Ge, H., Jiang, Y., Sun, Z., Ji, X., Jia, Z., & Cui, G. (2023). A Blockchain-

E-ISSN: 2809-6851 | P-ISSN: 2809-6851

775

Muhammad Saad Salahudin, Imam Baihaqi, Yen-Ching Liu

Based Traceability Model for Grain and Oil Food Supply Chain. Foods, 12(17). https://doi.org/10.3390/foods12173235

Zhu, P., Hu, J., Zhang, Y., & Li, X. (2020). A blockchain based solution for medication anti-counterfeiting and traceability. IEEE Access, 8, 184256–184272. https://doi.org/10.1109/ACCESS.2020.3029196

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).