Sentiment Classification of Livin’ by Mandiri Reviews in Indonesia Using LSTM for Digital Banking Service Improvement

  • Sigit Mulyanto* Department of Management, Faculty of Business, Universitas Darwan Ali, Sampit, Indonesia https://orcid.org/0009-0002-4917-8718
  • Dwika Lovitasari Yonia Department of Information Systems, Faculty of Computer Science, Universitas Darwan Ali, Sampit, Indonesia https://orcid.org/0009-0003-3694-189X
  • Kheylina Lidya Situmorang Department of Informatics, Universitas Methodist Indonesia, Medan, Indonesia
  • Bambang Sutejo Department of Management, Faculty of Business, Universitas Darwan Ali, Sampit, Indonesia
Keywords: Deep Learning, LSTM, Mobile Banking, Sentiment Analysis, User Reviews

Abstract

The rapid expansion of digital banking services in Indonesia has increased the need for continuous monitoring of user satisfaction, particularly through feedback submitted via app reviews. This study analyses user sentiment toward the Livin’ by Mandiri mobile banking application using a deep learning approach. A total of 5,000 user reviews were collected exclusively from the Google Play Store and pre-processed through text cleaning steps such as slang normalization, stemming, and tokenization. Sentiment labels (positive, neutral, negative) were assigned using an Indonesian lexicon-based method, and a Long Short-Term Memory (LSTM) model was trained and evaluated with accuracy, precision, recall, and F1-score metrics. Results indicate negative sentiment dominates (37.6%), with frequent complaints about login failures and slow performance, while the LSTM model achieved 98% accuracy. This study is limited by its single-platform data source, potential linguistic bias in Indonesian user reviews, and the model’s limitations in detecting sarcasm or complex emotions. Nonetheless, the findings demonstrate the applicability of sentiment analysis as a real-time monitoring tool to support feature enhancement and user experience improvements in Indonesian mobile banking services.

References

Abhisikta, A., Agarwal, M., Mallick, P. K., & Padhy, N. (2024). Beyond Words: Contextual Sarcasm Detection in News Texts using Advanced Models. ESIC 2024 - 4th International Conference on Emerging Systems and Intelligent Computing, Proceedings, 566–571. https://doi.org/10.1109/ESIC60604.2024.10481639

Adiningtyas, H., & Auliani, A. S. (2024). Sentiment analysis for mobile banking service quality measurement. Procedia Computer Science, 234, 40–50. https://doi.org/10.1016/J.PROCS.2024.02.150

Af’idah, D. I., Kusumaningrum, R., & Surarso, B. (2020). Long short term memory convolutional neural network for Indonesian sentiment analysis towards touristic destination reviews. Proceedings - 2020 International Seminar on Application for Technology of Information and Communication: IT Challenges for Sustainability, Scalability, and Security in the Age of Digital Disruption, ISemantic 2020, 630–637. https://doi.org/10.1109/ISEMANTIC50169.2020.9234210

Aris, V., Ashdaq, M., & Taufik, M. (2024). Data Mining and Social Media Analysis to Identify Key Dimension of Service Quality for BTN Mobile App in Indonesia. Jurnal Ekonomi Dan Bisnis Digital, 3(1), 143–154. https://doi.org/10.55927/MINISTAL.V3I1.7565

Asri, Y., Kuswardani, D., Suliyanti, W. N., Manullang, Y. O., & Ansyari, A. R. (2025). Sentiment analysis based on Indonesian language lexicon and IndoBERT on user reviews PLN mobile application. Indonesian Journal of Electrical Engineering and Computer Science, 38(1), 677–688. https://doi.org/10.11591/IJEECS.V38.I1.PP677-688

Bimantara, M. D., & Zufria, I. (2024). Text Mining Sentiment Analysis on Mobile Banking Application Reviews using {TF-IDF} Method with Natural Language Processing Approach. JINAV: Journal of Information and Visualization, 5(1), 115–123. https://doi.org/10.35877/454RI.JINAV2772

Fahmi, S., Purnamawati, L., Shidik, G. F., Muljono, M., & Fanani, A. Z. (2020). Sentiment analysis of student review in learning management system based on sastrawi stemmer and SVM-PSO. Proceedings - 2020 International Seminar on Application for Technology of Information and Communication: IT Challenges for Sustainability, Scalability, and Security in the Age of Digital Disruption, ISemantic 2020, 643–648. https://doi.org/10.1109/ISEMANTIC50169.2020.9234291

Farida, F., Binastuti, S., Silfianti, W., & Hermana, B. (2023). The impact of Covid-19 on electronic payment system: Lesson learned from Indonesian banking. Technium Social Sciences Journal, 40, 200–212. https://doi.org/10.47577/TSSJ.V40I1.8295

Fide, S., Suparti, S., & Sudarno, S. (2021). Analisis Sentimen Ulasan Aplikasi Tiktok di Google Play Menggunakan Metode Support Vector Machine (SVM) dan Asosiasi. Jurnal Gaussian, 10(3), 346–358. https://doi.org/10.14710/J.GAUSS.10.3.346-358

Gowandi, T., Murfi, H., & Nurrohmah, S. (2021). Performance Analysis of Hybrid Architectures of Deep Learning for Indonesian Sentiment Analysis. Communications in Computer and Information Science, 1489 CCIS, 18–27. https://doi.org/10.1007/978-981-16-7334-4_2

Hidayat, A., & Kassim, S. (2023). The Determinants of Digital Banking Adoption Among Banks Offering Islamic Banking Services. Journal of Islamic Monetary Economics and Finance, 9(4), 559–588. https://doi.org/10.21098/JIMF.V9I4.1688

Hidayatullah, A. F. (2024). Code-Mixed Sentiment Analysis on Indonesian-Javanese-English Text Using Transformer Models. 2024 8th International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2024, 340–345. https://doi.org/10.1109/ICITISEE63424.2024.10730138

Lovitasari Yonia, D., Irham, A., Oranova Siahaan, D., & Mahfud, I. (2024). Learning Models for Software Feature Extraction from Disaster Tweets: A Comparative Study. ICECOS 2024 - 4th International Conference on Electrical Engineering and Computer Science, Proceeding, 83–88. https://doi.org/10.1109/ICECOS63900.2024.10791279

Lubis, F. A. (2024). User Sentiment Analysis Towards Islamic Banking Applications in Indonesia. Journal of Islamic Economic and Business Research, 4(1), 126–143. https://doi.org/10.18196/JIEBR.V4I1.342

Mulyanto, S., Yonia, D. L., & Sutejo, B. (2025). Finance Loan Risk Assessment Using Machine Learning for Credit Eligibility Prediction and Model Optimization. IJISTECH (International Journal of Information System and Technology), 8(5), 303–311. https://doi.org/10.30645/IJISTECH.V8I5.376

Nugroho, K. S., Sukmadewa, A. Y., Wuswilahaken Dw, H., Bachtiar, F. A., & Yudistira, N. (2021). BERT Fine-Tuning for Sentiment Analysis on Indonesian Mobile Apps Reviews. ACM International Conference Proceeding Series, 258–264. https://doi.org/10.1145/3479645.3479679

Purba, E. A., & Safrin, F. A. (2024). Pengaruh Online Customer Review, Harga dan Online Customer Ratting Terhadap Keputusan Pembelian Melalui Tokopedia (Studi Pada Konsumen Toko Online Ventela Store Official di Kota Medan). Jurnal Ekonomi Kreatif dan Manajemen Bisnis Digital, 2(3), 362–378. https://doi.org/10.55047/JEKOMBITAL.V2I3.613

Putri, D., Simangunsong, T., Purwana, D., & Musyaffi, A. (2025). Pengaruh E-Service Quality dan Kepuasan Nasabah terhadap Loyalitas Nasabah dalam Menggunakan Livin by Mandiri. Jurnal Yudistira : Publikasi Riset Ilmu Pendidikan Dan Bahasa, 3(2), 07–23. https://doi.org/10.61132/YUDISTIRA.V3I2.1613

Rahmi, R. A., & Handayani, P. W. (2024). The influence of users’ perspective factors on mobile banking adoption in Indonesia. Journal of Science and Technology Policy Management, 15(6), 1408–1425. https://doi.org/10.1108/JSTPM-01-2022-0008/FULL/XML

Rosman, M., Setiyawati, N., & Hosanna Bangkalang, D. (2022). The Comparison of Evaluation on User Experience and Usability of Mobile Banking Applications Using User Experience Questionnaire and System Usability Scale. Proceedings 2022, Vol. 82, Page 87, 82(1), 87. https://doi.org/10.3390/PROCEEDINGS2022082087

Sebayang, T. E., Hakim, D. B., Bakhtiar, T., & Indrawan, D. (2023). What Accelerates the Choice of Mobile Banking for Digital Banks in Indonesia? Journal of Risk and Financial Management 2024, Vol. 17, Page 6, 17(1), 6. https://doi.org/10.3390/JRFM17010006

Sebayang, T. E., Hakim, D. B., Bakhtiar, T., & Indrawan, D. (2024). The Investigation of Preference Attributes of Indonesian Mobile Banking Users to Develop a Strategy for Mobile Banking Adoption. Journal of Risk and Financial Management 2024, Vol. 17, Page 109, 17(3), 109. https://doi.org/10.3390/JRFM17030109

Setiabudi, R., Iswari, N. M. S., & Rusli, A. (2021). Enhancing text classification performance by preprocessing misspelled words in Indonesian language. TELKOMNIKA (Telecommunication Computing Electronics and Control), 19(4), 1234–1241. https://doi.org/10.12928/TELKOMNIKA.V19I4.20369

Singh, A., Thapliyal, R., Vanave, R., Shedge, R., & Mumbaikar, S. (2022). Analysis of hyperparameters in Sentiment Analysis of Movie Reviews using Bi-LSTM. ITM Web of Conferences, 44, 03012. https://doi.org/10.1051/ITMCONF/20224403012

Sulistiyani, Nurchayati, Nurchayati, & Handani, N. D. (2024). User Experience of Mobile Banking Application in Indonesia: New Technology of Banking. Global Business and Finance Review, 29(2), 127–141. https://doi.org/10.17549/GBFR.2024.29.2.127

Tanika, C., William, Hartanto, M. P., & Tanjung, M. (2022). Factors Influencing Indonesian Consumers to Use Digital Banking. Proceedings - 4th International Conference on Informatics, Multimedia, Cyber and Information System, ICIMCIS 2022, 546–551. https://doi.org/10.1109/ICIMCIS56303.2022.10017694

Vishnuprabha, V., Murali, L., & Viswanathan, D. M. (2021). Natural Language Processing. Cognitive Computing Systems, 349–400. https://doi.org/10.1201/9781003082033-19

Wati, K. E., Khuzaini, K., & Wijaya, N. Q. (2024). Why Users Choose Mobile Banking: Behavioral Insights using UTAUT. International Journal of Industrial Engineering, Technology & Operations Management, 2(1), 19–25. https://doi.org/10.62157/IJIETOM.V2I1.56

Yonia, D. L., Ariansyah, I., Dina, A. B., & Suciati, N. (2024). Enhancing Image Captioning Performance with VGG16 Feature Extraction and LSTM Sequence Processing. ICECOS 2024 - 4th International Conference on Electrical Engineering and Computer Science, Proceeding, 77–82. https://doi.org/10.1109/ICECOS63900.2024.10791213

Published
2025-08-26
How to Cite
Mulyanto, S., Yonia, D. L., Situmorang, K. L., & Sutejo, B. (2025). Sentiment Classification of Livin’ by Mandiri Reviews in Indonesia Using LSTM for Digital Banking Service Improvement. JURNAL EKONOMI KREATIF DAN MANAJEMEN BISNIS DIGITAL, 4(1), 141-153. https://doi.org/10.55047/jekombital.v4i1.1011
Section
Articles