OPPORTUNITIES AND CHALLENGES OF DIGITAL SUPPLY CHAIN: A SYSTEMATIC LITERATURE REVIEW USING SCOR FRAMEWORK

  • Muhammad Saad Salahudin* Department of Business Management, Institut Teknologi Sepuluh Nopember, Indonesia
  • Imam Baihaqi Department of Business Management, Institut Teknologi Sepuluh Nopember, Indonesia
  • Yen-Ching Liu Department of Business Administration, National Yunlin, University of Science and Technology, Taiwan
Keywords: Digital Supply Chain, Systematic Literature Review, SCOR Model

Abstract

Firms are increasingly integrating digital technology into their supply network systems for the purpose of attain global competitiveness. The utilization of digital technology has resulted in the Rise of a new supply chain management system known as the digital supply chain. Many parties believe that digital supply chain has several opportunities for companies, however, a number of researchers argues that the dependence on digital technology in the worldwide supply chain is accompanied by substantial obstacles. Therefore, this study intends to understand the opportunities and difficulties of digital supply chain and identify the future research agenda in this research area to develop better digital supply chain concepts and implementations. This research conducted systematic literature review through content analysis based on five dimensions in the SCOR model, which is plan, source, make, deliver, and return dimension. The analysis in this research finds that digital supply chain can enhances demand forecasting and product development in plan dimension, enables supplier selection and procurement automation in source dimension, facilitates smart and additive manufacturing in make dimension, optimizes inventory management, order management, transportation and logistics management in deliver dimension, as well as supports closed loop supply chain or circular economy in return dimension. However, the lack of infrastructure, policy, and coordination, along with financial, technical, and technological barrier, has become the common challenges of digital supply chain. Cybersecurity issue is also another main issue of the digital supply network. Through this analysis, the future research agenda can finally be taken in this research.

Downloads

Download data is not yet available.

References

Abbas, K., Afaq, M., Khan, T. A., & Song, W. C. (2020). A blockchain and machine learning-based drug supply chain management and recommendation system for smart pharmaceutical industry. Electronics (Switzerland), 9(5). https://doi.org/10.3390/electronics9050852

Abbas, R., Amran, G. A., Hussain, I., & Ma, S. (2022). A Soft Computing View for the Scientific Categorization of Vegetable Supply Chain Issues. Logistics, 6(3). https://doi.org/10.3390/logistics6030039

Agrawal, P., & Narain, R. (2018). Digital supply chain management: An Overview. IOP Conference Series: Materials Science and Engineering, 455, 012074. https://doi.org/10.1088/1757-899X/455/1/012074

Alamsjah, F., & Yunus, E. N. (2022). Achieving Supply Chain 4.0 and the Importance of Agility, Ambidexterity, and Organizational Culture: A Case of Indonesia. Journal of Open Innovation: Technology, Market, and Complexity, 8(2). https://doi.org/10.3390/joitmc8020083

Al-Rakhami, M. S., & Al-Mashari, M. (2021). A blockchain-based trust model for the internet of things supply chain management. Sensors, 21(5), 1–15. https://doi.org/10.3390/s21051759

Alzahrani, A., & Asghar, M. Z. (2024). Cyber vulnerabilities detection system in logistics-based IoT data exchange. Egyptian Informatics Journal, 25. https://doi.org/10.1016/j.eij.2024.100448

Angarita-Zapata, J. S., Alonso-Vicario, A., Masegosa, A. D., & Legarda, J. (2021). A taxonomy of food supply chain problems from a computational intelligence perspective. Sensors, 21(20). https://doi.org/10.3390/s21206910

Apruzzese, M., Bruni, M. E., Musso, S., & Perboli, G. (2023). 5G and Companion Technologies as a Boost in New Business Models for Logistics and Supply Chain. Sustainability (Switzerland), 15(15). https://doi.org/10.3390/su151511846

Banerjee, A., Lücker, F., & Ries, J. M. (2021). An empirical analysis of suppliers’ trade-off behaviour in adopting digital supply chain financing solutions. International Journal of Operations & Production Management, 41(4), 313–335. https://doi.org/10.1108/IJOPM-07-2020-0495

Bataineh, A. Q., Abu-Alsondos, I., Salhab, H. A., & Al-Abbas, L. S. (2022). A structural equation model for analyzing the relationship between enterprise resource planning and digital supply chain management. Uncertain Supply Chain Management, 10(4), 1289–1296. https://doi.org/10.5267/j.uscm.2022.7.011

Bhatia, S., & Albarrak, A. S. (2023). A Blockchain-Driven Food Supply Chain Management Using QR Code and XAI-Faster RCNN Architecture. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032579

Bistarelli, S., Faloci, F., & Mori, P. (2023). *-chain: A framework for automating the modeling of blockchain based supply chain tracing systems. Future Generation Computer Systems, 149, 679–700. https://doi.org/10.1016/j.future.2023.07.012

Boru, A., Dosdoğru, A. T., Göçken, M., & Erol, R. (2019). A novel hybrid artificial intelligence based methodology for the inventory routing problem. Symmetry, 11(5). https://doi.org/10.3390/sym11050717

Boza, A., Alemany, M. M. E., Alarcón, F., & Cuenca, L. (2014). A model-driven DSS architecture for delivery management in collaborative supply chains with lack of homogeneity in products. Production Planning and Control, 25(8), 650–661. https://doi.org/10.1080/09537287.2013.798085

Büyüközkan, G., & Göçer, F. (2018). Digital Supply Chain: Literature review and a proposed framework for future research. Computers in Industry, 97, 157–177. https://doi.org/10.1016/j.compind.2018.02.010

Caniato, F., Golini, R., & Kalchschmidt, M. (2013). The effect of global supply chain configuration on the relationship between supply chain improvement programs and performance. International Journal of Production Economics, 143(2), 285–293. https://doi.org/10.1016/j.ijpe.2012.05.019

Cantini, A., Peron, M., De Carlo, F., & Sgarbossa, F. (2024). A decision support system for configuring spare parts supply chains considering different manufacturing technologies. International Journal of Production Research, 62(8), 3023–3043. https://doi.org/10.1080/00207543.2022.2041757

Chehbi-Gamoura, S., Derrouiche, R., Damand, D., & Barth, M. (2020). Insights from big Data Analytics in supply chain management: an all-inclusive literature review using the SCOR model. Production Planning and Control, 31(5), 355–382. https://doi.org/10.1080/09537287.2019.1639839

Chen, C. L., Chiang, M. L., Deng, Y. Y., Weng, W., Wang, K., & Liu, C. C. (2021). A traceable firearm management system based on blockchain and iot technology. Symmetry, 13(3). https://doi.org/10.3390/sym13030439

Chen, Y. M., Chen, T. Y., & Li, J. S. (2023). A Machine Learning-Based Anomaly Detection Method and Blockchain-Based Secure Protection Technology in Collaborative Food Supply Chain. International Journal of E-Collaboration, 19(1). https://doi.org/10.4018/IJeC.315789

Cheng, F., Yang, S. L., Akella, R., & Tang, & X. T. (2011). A Meta-Modelling Service Paradigm For Cloud Computing And Its Implementation. In South African Journal of Industrial Engineering (Vol. 22, Issue 2). http://sajie.journals.ac.za

Chopra, S., & Meindl, P. (2016). Supply Chain Management: Strategy, Planning, and Operation (6th ed.). Pearson Education.

Christopher, M. (2016). Logistics and Supply Chain Management (5th ed.). Pearson Education.

Cocco, L., Mannaro, K., Tonelli, R., Mariani, L., Lodi, M. B., Melis, A., Simone, M., & Fanti, A. (2021). A Blockchain-Based Traceability System in Agri-Food SME: Case Study of a Traditional Bakery. IEEE Access, 9, 62899–62915. https://doi.org/10.1109/ACCESS.2021.3074874

Cui, P., Dixon, J., Guin, U., & Dimase, D. (2019). A Blockchain-Based Framework for Supply Chain Provenance. IEEE Access, 7, 157113–157125. https://doi.org/10.1109/ACCESS.2019.2949951

Cuñat Negueroles, S., Reinosa Simón, R., Julián, M., Belsa, A., Lacalle, I., S-Julián, R., & Palau, C. E. (2024). A Blockchain-based Digital Twin for IoT deployments in logistics and transportation. Future Generation Computer Systems, 158, 73–88. https://doi.org/10.1016/j.future.2024.04.011

Della Valle, F., & Oliver, M. (2021). A guidance for blockchain-based digital transition in supply chains. Applied Sciences (Switzerland), 11(14). https://doi.org/10.3390/app11146523

El Midaoui, M., Qbadou, M., & Mansouri, K. (2022). A fuzzy-based prediction approach for blood delivery using machine learning and genetic algorithm. International Journal of Electrical and Computer Engineering, 12(1), 1056–1068. https://doi.org/10.11591/ijece.v12i1.pp1056-1068

Farooq, M. S., Riaz, S., Rehman, I. U., Khan, M. A., & Hassan, B. (2023). A Blockchain-Based Framework to Make the Rice Crop Supply Chain Transparent and Reliable in Agriculture. Systems, 11(9). https://doi.org/10.3390/systems11090476

Feng, Z., Li, W., Zhang, H., & Zhang, X. (2023). A Framework of a Blockchain-Supported Remanufacturing Trading Platform through Gap Analysis. Sustainability (Switzerland), 15(16). https://doi.org/10.3390/su151612120

Ferdousi, T., Gruenbacher, D., & Scoglio, C. M. (2020). A Permissioned Distributed Ledger for the US Beef Cattle Supply Chain. IEEE Access, 8, 154833–154847. https://doi.org/10.1109/ACCESS.2020.3019000

Fernández-Caramés, T. M., Fraga-Lamas, P., Suárez-Albela, M., & Díaz-Bouza, M. A. (2018). A fog computing based cyber-physical system for the automation of pipe-related tasks in the industry 4.0 shipyard. Sensors (Switzerland), 18(6). https://doi.org/10.3390/s18061961

Figorilli, S., Antonucci, F., Costa, C., Pallottino, F., Raso, L., Castiglione, M., Pinci, E., Del Vecchio, D., Colle, G., Proto, A. R., Sperandio, G., & Menesatti, P. (2018). A blockchain implementation prototype for the electronic open source traceability of wood along the whole supply chain. Sensors (Switzerland), 18(9). https://doi.org/10.3390/s18093133

Gayialis, S. P., Kechagias, E. P., Konstantakopoulos, G. D., & Papadopoulos, G. A. (2022). A Predictive Maintenance System for Reverse Supply Chain Operations. Logistics, 6(1). https://doi.org/10.3390/logistics6010004

George, W., & Al-Ansari, T. (2023). GM-Ledger: Blockchain-Based Certificate Authentication for International Food Trade. Foods, 12(21). https://doi.org/10.3390/foods12213914

Gereffi, G., & Lee, J. (2016). Economic and Social Upgrading in Global Value Chains and Industrial Clusters: Why Governance Matters. Journal of Business Ethics, 133(1), 25–38. https://doi.org/10.1007/s10551-014-2373-7

Ghasemi, R., Akhavan, P., Abbasi, M., & Valilai, O. F. (2023). A Novel Supplier-Managed Inventory Order Assignment Platform Enabled by Blockchain Technology. IEEE Access, 11, 140763–140773. https://doi.org/10.1109/ACCESS.2023.3341361

Gholipour, A., Sadegheih, A., Mostafaeipour, A., & Fakhrzad, M. B. (2024). Designing an optimal multi-objective model for a sustainable closed-loop supply chain: a case study of pomegranate in Iran. Environment, Development and Sustainability, 26(2), 3993–4027. https://doi.org/10.1007/s10668-022-02868-5

Giannakis, M., & Louis, M. (2016). A multi-agent based system with big data processing for enhanced supply chain agility. Journal of Enterprise Information Management, 29(5), 706–727. https://doi.org/10.1108/JEIM-06-2015-0050

Gondal, M. U. A., Khan, M. A., Haseeb, A., Albarakati, H. M., & Shabaz, M. (2023). A secure food supply chain solution: blockchain and IoT-enabled container to enhance the efficiency of shipment for strawberry supply chain. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1294829

Goodarzian, F., Ghasemi, P., Gunasekaran, A., & Labib, A. (2024). A fuzzy sustainable model for COVID-19 medical waste supply chain network. Fuzzy Optimization and Decision Making, 23(1), 93–127. https://doi.org/10.1007/s10700-023-09412-8

Gorecki, S., Possik, J., Zacharewicz, G., Ducq, Y., & Perry, N. (2020). A multicomponent distributed framework for smart production system modeling and simulation. Sustainability (Switzerland), 12(17). https://doi.org/10.3390/SU12176969

Guixia, X., Samian, N., Mohd Faizal, M. F., Mohd As’Ad, M. A. Z., Mohamad Fadzil, M. F., Abdullah, A., Seah, W. K. G., Ishak, M., & Hermadi, I. (2024). A Framework for Blockchain and Internet of Things Integration in Improving Food Security in the Food Supply Chain. Journal of Advanced Research in Applied Sciences and Engineering Technology, 34(1), 24–37. https://doi.org/10.37934/araset.34.1.2437

Gupya, O. (2023). Digital Transformation in Supply Chain India: Challenges and Opportunities. PsychologyandEducation, 55(1). https://doi.org/10.48047/pne.2018.55.1.52

Hartley, J. L., & Sawaya, W. J. (2019). Tortoise, not the hare: Digital transformation of supply chain business processes. Business Horizons, 62(6), 707–715. https://doi.org/10.1016/j.bushor.2019.07.006

Hasan, A. S. M. T., Sabah, S., Daria, A., & Haque, R. U. (2023). A peer-to-peer blockchain-based architecture for trusted and reliable agricultural product traceability. Decision Analytics Journal, 9. https://doi.org/10.1016/j.dajour.2023.100363

Hassouna, M., El-Henawy, I., & Haggag, R. (n.d.). A Multi-Objective Optimization for Supply Chain Management using Artificial Intelligence (AI). In IJACSA) International Journal of Advanced Computer Science and Applications (Vol. 13, Issue 8). www.ijacsa.thesai.org

Hawashin, D., Salah, K., Jayaraman, R., Yaqoob, I., & Musamih, A. (2022). A Blockchain-Based Solution for Mitigating Overproduction and Underconsumption of Medical Supplies. IEEE Access, 10, 71669–71682. https://doi.org/10.1109/ACCESS.2022.3188778

Helmi Ali, M., Chung, L., Kumar, A., Zailani, S., & Hua Tan, K. (2021). A Sustainable Blockchain Framework for the Halal Food Supply Chain: Lessons from Malaysia.

Hugos, M. (2018). Essentials of Supply Chain Management (4th ed.). John Wiley & Sons, Inc.

Hülsmann, M., Grapp, J., & Li, Y. (2008). Strategic adaptivity in global supply chains—Competitive advantage by autonomous cooperation. International Journal of Production Economics, 114(1), 14–26. https://doi.org/10.1016/j.ijpe.2007.09.009

Isaja, M., Nguyen, P., Goknil, A., Sen, S., Husom, E. J., Tverdal, S., Anand, A., Jiang, Y., Pedersen, K. J., Myrseth, P., Stang, J., Niavis, H., Pfeifhofer, S., & Lamplmair, P. (2023). A blockchain-based framework for trusted quality data sharing towards zero-defect manufacturing. Computers in Industry, 146. https://doi.org/10.1016/j.compind.2023.103853

Ivanov, D. (2024). Digital Supply Chain Management and Technology to Enhance Resilience by Building and Using End-to-End Visibility During the COVID-19 Pandemic. IEEE Transactions on Engineering Management, 1–11. https://doi.org/10.1109/TEM.2021.3095193

Jabbar, S., Lloyd, H., Hammoudeh, M., Adebisi, B., & Raza, U. (2021). Blockchain-enabled supply chain: analysis, challenges, and future directions. Multimedia Systems, 27(4), 787–806. https://doi.org/10.1007/s00530-020-00687-0

Jamil, F., Hang, L., Kim, K. H., & Kim, D. H. (2019). A novel medical blockchain model for drug supply chain integrity management in a smart hospital. Electronics (Switzerland), 8(5). https://doi.org/10.3390/electronics8050505

Jegan Joseph Jerome, J., Sonwaney, V., Bryde, D., & Graham, G. (2024). Achieving competitive advantage through technology-driven proactive supply chain risk management: an empirical study. Annals of Operations Research, 332(1–3), 149–190. https://doi.org/10.1007/s10479-023-05604-y

Jesse, F. F., Antonini, C., & Luque-Vilchez, M. (2023). A circularity accounting network: CO2 measurement along supply chains using machine learning. Revista de Contabilidad-Spanish Accounting Review, 26(Special Issue), 21–33. https://doi.org/10.6018/RCSAR.564901

Jha, A. K., Agi, M. A. N., & Ngai, E. W. T. (2020). A note on big data analytics capability development in supply chain. Decision Support Systems, 138. https://doi.org/10.1016/j.dss.2020.113382

Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. In International Journal of Production Economics (Vol. 219, pp. 179–194). Elsevier B.V. https://doi.org/10.1016/j.ijpe.2019.05.022

Kamble, S. S., Gunasekaran, A., Ghadge, A., & Raut, R. (2020). A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs- A review and empirical investigation. International Journal of Production Economics, 229, 107853. https://doi.org/10.1016/j.ijpe.2020.107853

Kamran, M. A., Kia, R., Goodarzian, F., & Ghasemi, P. (2023). A new vaccine supply chain network under COVID-19 conditions considering system dynamic: Artificial intelligence algorithms. Socio-Economic Planning Sciences, 85. https://doi.org/10.1016/j.seps.2022.101378

Kaur, G., Dey, B. K., Pandey, P., Majumder, A., & Gupta, S. (2024). A Smart Manufacturing Process for Textile Industry Automation under Uncertainties. Processes, 12(4). https://doi.org/10.3390/pr12040778

Kittipanya-ngam, P., & Tan, K. H. (2020). A framework for food supply chain digitalization: lessons from Thailand. Production Planning and Control, 31(2–3), 158–172. https://doi.org/10.1080/09537287.2019.1631462

Kousiouris, G., Tsarsitalidis, S., Psomakelis, E., Koloniaris, S., Bardaki, C., Tserpes, K., Nikolaidou, M., & Anagnostopoulos, D. (2019). A microservice-based framework for integrating IoT management platforms, semantic and AI services for supply chain management. ICT Express, 5(2), 141–145. https://doi.org/10.1016/j.icte.2019.04.002

Kulkarni, A., & Xu, C. (2021). A Deep Learning Approach in Optical Inspection to Detect Hidden Hardware Trojans and Secure Cybersecurity in Electronics Manufacturing Supply Chains. Frontiers in Mechanical Engineering, 7. https://doi.org/10.3389/fmech.2021.709924

Kumar, D., Singh, J., Singh, O. P., & Seema. (2013). A fuzzy logic based decision support system for evaluation of suppliers in supply chain management practices. Mathematical and Computer Modelling, 58(11–12), 1679–1695. https://doi.org/10.1016/j.mcm.2013.07.003

Lamela, M. P., Rodriguez-Molina, J., Martinez-Nunez, M., & Garbajosa, J. (2022). A Blockchain-Based Decentralized Marketplace for Trustworthy Trade in Developing Countries. IEEE Access, 10, 79100–79123. https://doi.org/10.1109/ACCESS.2022.3194511

L’Hermitte, C., & Nair, N. K. C. (2021). A blockchain-enabled framework for sharing logistics resources during emergency operations. Disasters, 45(3), 527–554. https://doi.org/10.1111/disa.12436

Li, Q., Zhang, H., Liu, K., Zhang, Z. J., & Jasimuddin, S. M. (2023). Linkage between digital supply chain, supply chain innovation and supply chain dynamic capabilities: an empirical study. The International Journal of Logistics Management. https://doi.org/10.1108/IJLM-01-2022-0009

Liang, W., Zhang, L., & Kadoch, M. (2023). 6G IoT Tracking- and Machine Learning-Enhanced Blockchained Supply Chain Management. Electronics (Switzerland), 12(1). https://doi.org/10.3390/electronics12010040

Liao, W., & Wang, T. (2019). A novel collaborative optimization model for job shop production-delivery considering time window and carbon emission. Sustainability (Switzerland), 11(10). https://doi.org/10.3390/su11102781

Lin, S. Y., Zhang, L., Li, J., Ji, L. li, & Sun, Y. (2022). A survey of application research based on blockchain smart contract. Wireless Networks, 28(2), 635–690. https://doi.org/10.1007/s11276-021-02874-x

Liu, W., Liang, Y., Lim, M. K., Long, S., & Shi, X. (2022). A theoretical framework of smart supply chain innovation for going global companies: a multi-case study from China. International Journal of Logistics Management, 33(3), 1090–1113. https://doi.org/10.1108/IJLM-10-2020-0388

Mahroof, K. (2019). A human-centric perspective exploring the readiness towards smart warehousing: The case of a large retail distribution warehouse. International Journal of Information Management, 45, 176–190. https://doi.org/10.1016/j.ijinfomgt.2018.11.008

Makridis, G., Mavrepis, P., & Kyriazis, D. (2023). A deep learning approach using natural language processing and time-series forecasting towards enhanced food safety. Machine Learning, 112(4), 1287–1313. https://doi.org/10.1007/s10994-022-06151-6

Malatji, M. (2024). Accelerating the African continental free trade area through optimization of digital supply chains. Engineering Reports, 6(2). https://doi.org/10.1002/eng2.12711

Marchese, A., & Tomarchio, O. (2022). A Blockchain-Based System for Agri-Food Supply Chain Traceability Management. SN Computer Science, 3(4). https://doi.org/10.1007/s42979-022-01148-3

Modares, A., Kazemi, M., Emroozi, V. B., & Roozkhosh, P. (2023). A New Supply Chain Design To Solve Supplier Selection Based On Internet Of Things And Delivery Reliability. Journal of Industrial and Management Optimization, 19(11), 7993–8028. https://doi.org/10.3934/jimo.2023028

Monteiro, E. S., Righi, R. da R., Barbosa, J. L. V., & Alberti, A. M. (2021). APTM: A model for pervasive traceability of agrochemicals. Applied Sciences (Switzerland), 11(17). https://doi.org/10.3390/app11178149

Montero, J., Weber, S., Bleckmann, M., & Paetzold, K. (2020). A methodology for the decentralised design and production of additive manufactured spare parts. Production and Manufacturing Research, 8(1), 313–334. https://doi.org/10.1080/21693277.2020.1790437

Muafi, M., & Sulistio, J. (2022). A Nexus Between Green Intelectual Capital, Supply Chain Integration, Digital Supply Chain, Supply Chain Agility, and Business Performance. Journal of Industrial Engineering and Management, 15(2), 275–295. https://doi.org/10.3926/jiem.3831

Mukherjee, P. (2017, March 15). Being an integral part of global supply chains: ’People power’ from innovation to expertise is what counts.

Musamih, A., Salah, K., Jayaraman, R., Arshad, J., Debe, M., Al-Hammadi, Y., & Ellahham, S. (2021). A blockchain-based approach for drug traceability in healthcare supply chain. IEEE Access, 9, 9728–9743. https://doi.org/10.1109/ACCESS.2021.3049920

Mustaffa, N. A., Zulkifli, M., & Khan, M. H. (2023). DSC Index Measuring the Digital Supply Chain Practice among the Higher EducationInstitutions Community in Least DevelopedCountries.

Nasereddin, A. Y. (2024). A comprehensive survey of contemporary supply chain management practices in charting the digital age revolution. Uncertain Supply Chain Management, 12(2), 1331–1352. https://doi.org/10.5267/j.uscm.2023.11.004

Nayak, G., & Dhaigude, A. S. (2019). A conceptual model of sustainable supply chain management in small and medium enterprises using blockchain technology. Cogent Economics and Finance, 7(1). https://doi.org/10.1080/23322039.2019.1667184

Nozari, H., Fallah, M., Szmelter-Jarosz, A., & Krzemiński, M. (2021). Analysis of Security Criteria for IoT-Based Supply Chain: A Case Study of FMCG Industries. Central European Management Journal, 29(4), 149–171. https://doi.org/10.7206/cemj.2658-0845.63

Nozari, H., Szmelter-Jarosz, A., & Ghahremani-Nahr, J. (2022). Analysis of the Challenges of Artificial Intelligence of Things (AIoT) for the Smart Supply Chain (Case Study: FMCG Industries). Sensors, 22(8), 2931. https://doi.org/10.3390/s22082931

Ouf, S. (2021). A Proposed Architecture for Pharmaceutical Supply Chain Based Semantic Blockchain. International Journal of Intelligent Engineering and Systems, 14(3), 31–42. https://doi.org/10.22266/ijies2021.0630.04

Parker, D. J., Nuttall, G. H., Bray, N., Hugill, T., Martinez-Santos, A., Edwards, R. T., & Nester, C. (2019). A randomised controlled trial and cost-consequence analysis of traditional and digital foot orthoses supply chains in a National Health Service setting: Application to feet at risk of diabetic plantar ulceration. Journal of Foot and Ankle Research, 12(1). https://doi.org/10.1186/s13047-018-0311-0

Popović, T., Krčo, S., Maraš, V., Hakola, L., Radonjić, S., van Kranenburg, R., & Šandi, S. (2021). A novel solution for counterfeit prevention in the wine industry based on IoT, smart tags, and crowd-sourced information. Internet of Things (Netherlands), 14. https://doi.org/10.1016/j.iot.2021.100375

Priyan, S. (2024). A blockchain-based inventory system with lot size-dependent lead times and uncertain carbon footprints. International Journal of Information Management Data Insights, 4(1). https://doi.org/10.1016/j.jjimei.2024.100225

Qu, M., Xu, T., & Ju, C. (2024). A Green Supply Chain Management Strategy for E-Commerce Based on Multiple Blockchain Technology. Applied Mathematics and Nonlinear Sciences, 9(1). https://doi.org/10.2478/amns.2023.2.00450

Queiroz, M. M., Pereira, S. C. F., Telles, R., & Machado, M. C. (2021). Industry 4.0 and digital supply chain capabilities. Benchmarking: An International Journal, 28(5), 1761–1782. https://doi.org/10.1108/BIJ-12-2018-0435

Raj, A., Dwivedi, G., Sharma, A., Lopes de Sousa Jabbour, A. B., & Rajak, S. (2020). Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics, 224, 107546. https://doi.org/10.1016/j.ijpe.2019.107546

Rajput, S., & Singh, S. P. (2019). Identifying Industry 4.0 IoT enablers by integrated PCA-ISM-DEMATEL approach. Management Decision, 57(8), 1784–1817. https://doi.org/10.1108/MD-04-2018-0378

Ramanathan, K., & Samaranayake, P. (2022). Assessing Industry 4.0 readiness in manufacturing: a self-diagnostic framework and an illustrative case study. Journal of Manufacturing Technology Management, 33(3), 468–488. https://doi.org/10.1108/JMTM-09-2021-0339

Ransikarbum, K., Pitakaso, R., & Kim, N. (2020). A decision-support model for additive manufacturing scheduling using an integrative analytic hierarchy process and multi-objective optimization. Applied Sciences (Switzerland), 10(15). https://doi.org/10.3390/app10155159

Saban, M., Bekkour, M., Amdaouch, I., El Gueri, J., Ait Ahmed, B., Chaari, M. Z., Ruiz-Alzola, J., Rosado-Muñoz, A., & Aghzout, O. (2023). A Smart Agricultural System Based on PLC and a Cloud Computing Web Application Using LoRa and LoRaWan. Sensors, 23(5). https://doi.org/10.3390/s23052725

Salmi, M., Akmal, J. S., Pei, E., Wolff, J., Jaribion, A., & Khajavi, S. H. (2020). 3D printing in COVID-19: Productivity estimation of the most promising open source solutions in emergency situations. Applied Sciences (Switzerland), 10(11). https://doi.org/10.3390/app10114004

Santos, R. C., & Martinho, J. L. (2019). An Industry 4.0 maturity model proposal. Journal of Manufacturing Technology Management, 31(5), 1023–1043. https://doi.org/10.1108/JMTM-09-2018-0284

Satzer, P., & Achleitner, L. (2022). 3D printing: Economical and supply chain independent single-use plasticware for cell culture. New Biotechnology, 69, 55–61. https://doi.org/10.1016/j.nbt.2022.03.002

Schumacher, A., Erol, S., & Sihn, W. (2016). A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises. Procedia CIRP, 52, 161–166. https://doi.org/10.1016/j.procir.2016.07.040

Scuotto, V., Caputo, F., Villasalero, M., & Del Giudice, M. (2017). A multiple buyer–supplier relationship in the context of SMEs’ digital supply chain management*. Production Planning and Control, 28(16), 1378–1388. https://doi.org/10.1080/09537287.2017.1375149

Shah, J. K., Sharma, M., & Joshi, S. (2023). Digital supply chain management: A comprehensive review using cluster analysis, with future directions and open challenges. International Journal of Supply and Operations Management, 10(3), 337–364. https://doi.org/10.22034/ijsom.2023.109914.2739

Shahbazi, Z., & Byun, Y. C. (2021). A procedure for tracing supply chains for perishable food based on blockchain, machine learning and fuzzy logic. Electronics (Switzerland), 10(1), 1–21. https://doi.org/10.3390/electronics10010041

Shamout, M., Ben-Abdallah, R., Alshurideh, M., Alzoubi, H., Al Kurdi, B., & Hamadneh, S. (2022). A conceptual model for the adoption of autonomous robots in supply chain and logistics industry. Uncertain Supply Chain Management, 10(2), 577–592. https://doi.org/10.5267/j.uscm.2021.11.006

Shen, B., Xu, X., & Yuan, Q. (2020). Selling secondhand products through an online platform with blockchain. Transportation Research Part E: Logistics and Transportation Review, 142. https://doi.org/10.1016/j.tre.2020.102066

Singh, D., & Chaddah, J. K. (2021). A study on application of blockchain technology to control counterfeit drugs, enhance data privacy and improve distribution in online pharmacy. Asia Pacific Journal of Health Management, 16(3). https://doi.org/10.24083/apjhm.v16i3.1013

Sitek, P., Wikarek, J., & Nielsen, P. (2017). A constraint-driven approach to food supply chain management. Industrial Management and Data Systems, 117(9), 2115–2138. https://doi.org/10.1108/IMDS-10-2016-0465

Stentoft, J., Adsbøll Wickstrøm, K., Philipsen, K., & Haug, A. (2021). Drivers and barriers for Industry 4.0 readiness and practice: empirical evidence from small and medium-sized manufacturers. Production Planning & Control, 32(10), 811–828. https://doi.org/10.1080/09537287.2020.1768318

Subramaniyam, M., Halim-Lim, S. A., Mohamad, S. F. B., & Priyono, A. (2021). Digital Supply Chain in the Food Industry: Critical Success Factors and Barriers. 2021 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2021, 404–410. https://doi.org/10.1109/IEEM50564.2021.9672606

Tan, A., & Ngan, P. T. (2020). A proposed framework model for dairy supply chain traceability. Sustainable Futures, 2. https://doi.org/10.1016/j.sftr.2020.100034

Tan, B. Q., Wang, F., Liu, J., Kang, K., & Costa, F. (2020). A blockchain-based framework for green logistics in supply chains. Sustainability (Switzerland), 12(11). https://doi.org/10.3390/su12114656

Tang, Q., Wu, B., Chen, W., & Yue, J. (2023). A Digital Twin-Assisted Collaborative Capability Optimization Model for Smart Manufacturing System Based on Elman-IVIF-TOPSIS. IEEE Access, 11, 40540–40564. https://doi.org/10.1109/ACCESS.2023.3269577

Tao, Q., Cai, Z., & Cui, X. (2023). A technological quality control system for rice supply chain. Food and Energy Security, 12(2). https://doi.org/10.1002/fes3.382

Thelwall, M. (2018). Dimensions: A competitor to Scopus and the Web of Science? Journal of Informetrics, 12(2), 430–435. https://doi.org/10.1016/j.joi.2018.03.006

Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What does Industry 4.0 mean to Supply Chain? Procedia Manufacturing, 13, 1175–1182. https://doi.org/10.1016/j.promfg.2017.09.191

Toyoda, K., Takis Mathiopoulos, P., Sasase, I., & Ohtsuki, T. (2017). A Novel Blockchain-Based Product Ownership Management System (POMS) for Anti-Counterfeits in the Post Supply Chain. IEEE Access, 5, 17465–17477. https://doi.org/10.1109/ACCESS.2017.2720760

Trabucco, M., & De Giovanni, P. (2021). Achieving resilience and business sustainability during COVID-19: The role of lean supply chain practices and digitalization. Sustainability (Switzerland), 13(22). https://doi.org/10.3390/su132212369

Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence‐Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375

Valencia-Payan, C., Grass-Ramirez, J. F., Ramirez-Gonzalez, G., & Corrales, J. C. (2022). A Smart Contract for Coffee Transport and Storage With Data Validation. IEEE Access, 10, 37857–37869. https://doi.org/10.1109/ACCESS.2022.3165087

Verdouw, C. N., Beulens, A. J. M., Reijers, H. A., & Van Der Vorst, J. G. A. J. (2015). A control model for object virtualization in supply chain management. Computers in Industry, 68, 116–131. https://doi.org/10.1016/j.compind.2014.12.011

Vinayavekhin, S., Banerjee, A., & Li, F. (2024). “Putting your money where your mouth is”: An empirical study on buyers’ preferences and willingness to pay for blockchain-enabled sustainable supply chain transparency. Journal of Purchasing and Supply Management. https://doi.org/10.1016/j.pursup.2024.100900

Violino, S., Pallottino, F., Sperandio, G., Figorilli, S., Ortenzi, L., Tocci, F., Vasta, S., Imperi, G., & Costa, C. (2020). A full technological traceability system for extra virgin olive oil. Foods, 9(5). https://doi.org/10.3390/foods9050624

Viswanadham, Y. V. R. S., & Jayavel, K. (2023). A Framework for Data Privacy Preserving in Supply Chain Management Using Hybrid Meta-Heuristic Algorithm with Ethereum Blockchain Technology. Electronics (Switzerland), 12(6). https://doi.org/10.3390/electronics12061404

Wang, L., He, Y., & Wu, Z. (2022). Design of a Blockchain‐Enabled Traceability System Framework for Food Supply Chains. Foods, 11(5). https://doi.org/10.3390/foods11050744

Wang, W. (2024). A IoT-Based Framework for Cross-Border E-Commerce Supply Chain Using Machine Learning and Optimization. IEEE Access, 12, 1852–1864. https://doi.org/10.1109/ACCESS.2023.3347452

Weerabahu, W. M. S. K., Samaranayake, P., Nakandala, D., & Hurriyet, H. (2023). Digital supply chain research trends: a systematic review and a maturity model for adoption. In Benchmarking (Vol. 30, Issue 9, pp. 3040–3066). Emerald Publishing. https://doi.org/10.1108/BIJ-12-2021-0782

Wilson, S., Adu-Duodu, K., Li, Y., Sham, R., Almubarak, M., Wang, Y., Solaiman, E., Perera, C., Ranjan, R., & Rana, O. (2024). Blockchain-Enabled Provenance Tracking for Sustainable Material Reuse in Construction Supply Chains †. Future Internet, 16(4). https://doi.org/10.3390/fi16040135

Wu, C. H., Tsang, Y. P., Lee, C. K. M., & Ching, W. K. (2021). A blockchain-iot platform for the smart pallet pooling management. Sensors, 21(18). https://doi.org/10.3390/s21186310

Wu, H., Li, Z., King, B., Miled, Z. Ben, Wassick, J., & Tazelaar, J. (2017). A distributed ledger for supply chain physical distribution visibility. Information (Switzerland), 8(4). https://doi.org/10.3390/info8040137

Xia, W., Li, B., & Yin, S. (2020). A prescription for urban sustainability transitions in China: Innovative partner selection management of green building materials industry in an integrated supply chain. Sustainability (Switzerland), 12(7). https://doi.org/10.3390/su12072581

Xiao, R., Zhang, Y., Cui, X. H., Zhang, F., & Wang, H. H. (2021). A hybrid task crash recovery solution for edge computing in IoT-based manufacturing. IEEE Access, 9, 106220–106231. https://doi.org/10.1109/ACCESS.2021.3068471

Xiong, F., Xiao, R., Ren, W., Zheng, R., & Jiang, J. (2019). A key protection scheme based on secret sharing for blockchain-based construction supply chain system. IEEE Access, 7, 126773–126786. https://doi.org/10.1109/ACCESS.2019.2937917

Xue, F., & Li, F. (2023). A Quality Traceability System for Fruit and Vegetable Supply Chain Based on Multi-Chain Blockchain. International Journal of Information Systems and Supply Chain Management, 16(1). https://doi.org/10.4018/IJISSCM.330681

Yong Chan, K., Abdullah, J., & Shahid Khan, A. (2019). A Framework for Traceable and Transparent Supply Chain Management for Agri-food Sector in Malaysia using Blockchain Technology. In IJACSA) International Journal of Advanced Computer Science and Applications (Vol. 10, Issue 11). www.ijacsa.thesai.org

Yoo, M., & Won, Y. (2018). A study on the transparent price tracing system in supply chain management based on blockchain. Sustainability (Switzerland), 10(11). https://doi.org/10.3390/su10114037

Zekhnini, K., Cherrafi, A., Bouhaddou, I., Benghabrit, Y., & Garza-Reyes, J. A. (2020). Supply chain management 4.0: a literature review and research framework. Benchmarking: An International Journal, 28(2), 465–501. https://doi.org/10.1108/BIJ-04-2020-0156

Zhang, H., Lv, Y., Zhang, S., & Liu, Y. D. (2024). Digital Supply Chain Management: A Review and Bibliometric Analysis. Journal of Global Information Management, 32(1). https://doi.org/10.4018/JGIM.336285

Zhang, H., Yan, Q., Qin, Y., Chen, S., & Zhang, G. (2023). A Novel Approach of Resource Allocation for Distributed Digital Twin Shop-Floor. Information (Switzerland), 14(8). https://doi.org/10.3390/info14080458

Zhang, Y., Wu, X., Ge, H., Jiang, Y., Sun, Z., Ji, X., Jia, Z., & Cui, G. (2023). A Blockchain-Based Traceability Model for Grain and Oil Food Supply Chain. Foods, 12(17). https://doi.org/10.3390/foods12173235

Zhu, P., Hu, J., Zhang, Y., & Li, X. (2020). A blockchain based solution for medication anti-counterfeiting and traceability. IEEE Access, 8, 184256–184272. https://doi.org/10.1109/ACCESS.2020.3029196

Published
2024-08-24
How to Cite
Salahudin, M. S., Baihaqi, I., & Liu, Y.-C. (2024). OPPORTUNITIES AND CHALLENGES OF DIGITAL SUPPLY CHAIN: A SYSTEMATIC LITERATURE REVIEW USING SCOR FRAMEWORK. TRANSEKONOMIKA: AKUNTANSI, BISNIS DAN KEUANGAN, 4(5), 756-776. https://doi.org/10.55047/transekonomika.v4i5.717