OPPORTUNITIES AND CHALLENGES OF DIGITAL SUPPLY CHAIN: A SYSTEMATIC LITERATURE REVIEW USING SCOR FRAMEWORK
Abstract
Firms are increasingly integrating digital technology into their supply network systems for the purpose of attain global competitiveness. The utilization of digital technology has resulted in the Rise of a new supply chain management system known as the digital supply chain. Many parties believe that digital supply chain has several opportunities for companies, however, a number of researchers argues that the dependence on digital technology in the worldwide supply chain is accompanied by substantial obstacles. Therefore, this study intends to understand the opportunities and difficulties of digital supply chain and identify the future research agenda in this research area to develop better digital supply chain concepts and implementations. This research conducted systematic literature review through content analysis based on five dimensions in the SCOR model, which is plan, source, make, deliver, and return dimension. The analysis in this research finds that digital supply chain can enhances demand forecasting and product development in plan dimension, enables supplier selection and procurement automation in source dimension, facilitates smart and additive manufacturing in make dimension, optimizes inventory management, order management, transportation and logistics management in deliver dimension, as well as supports closed loop supply chain or circular economy in return dimension. However, the lack of infrastructure, policy, and coordination, along with financial, technical, and technological barrier, has become the common challenges of digital supply chain. Cybersecurity issue is also another main issue of the digital supply network. Through this analysis, the future research agenda can finally be taken in this research.
Downloads
References
Abbas, K., Afaq, M., Khan, T. A., & Song, W. C. (2020). A blockchain and machine learning-based drug supply chain management and recommendation system for smart pharmaceutical industry. Electronics (Switzerland), 9(5). https://doi.org/10.3390/electronics9050852
Abbas, R., Amran, G. A., Hussain, I., & Ma, S. (2022). A Soft Computing View for the Scientific Categorization of Vegetable Supply Chain Issues. Logistics, 6(3). https://doi.org/10.3390/logistics6030039
Agrawal, P., & Narain, R. (2018). Digital supply chain management: An Overview. IOP Conference Series: Materials Science and Engineering, 455, 012074. https://doi.org/10.1088/1757-899X/455/1/012074
Alamsjah, F., & Yunus, E. N. (2022). Achieving Supply Chain 4.0 and the Importance of Agility, Ambidexterity, and Organizational Culture: A Case of Indonesia. Journal of Open Innovation: Technology, Market, and Complexity, 8(2). https://doi.org/10.3390/joitmc8020083
Al-Rakhami, M. S., & Al-Mashari, M. (2021). A blockchain-based trust model for the internet of things supply chain management. Sensors, 21(5), 1–15. https://doi.org/10.3390/s21051759
Alzahrani, A., & Asghar, M. Z. (2024). Cyber vulnerabilities detection system in logistics-based IoT data exchange. Egyptian Informatics Journal, 25. https://doi.org/10.1016/j.eij.2024.100448
Angarita-Zapata, J. S., Alonso-Vicario, A., Masegosa, A. D., & Legarda, J. (2021). A taxonomy of food supply chain problems from a computational intelligence perspective. Sensors, 21(20). https://doi.org/10.3390/s21206910
Apruzzese, M., Bruni, M. E., Musso, S., & Perboli, G. (2023). 5G and Companion Technologies as a Boost in New Business Models for Logistics and Supply Chain. Sustainability (Switzerland), 15(15). https://doi.org/10.3390/su151511846
Banerjee, A., Lücker, F., & Ries, J. M. (2021). An empirical analysis of suppliers’ trade-off behaviour in adopting digital supply chain financing solutions. International Journal of Operations & Production Management, 41(4), 313–335. https://doi.org/10.1108/IJOPM-07-2020-0495
Bataineh, A. Q., Abu-Alsondos, I., Salhab, H. A., & Al-Abbas, L. S. (2022). A structural equation model for analyzing the relationship between enterprise resource planning and digital supply chain management. Uncertain Supply Chain Management, 10(4), 1289–1296. https://doi.org/10.5267/j.uscm.2022.7.011
Bhatia, S., & Albarrak, A. S. (2023). A Blockchain-Driven Food Supply Chain Management Using QR Code and XAI-Faster RCNN Architecture. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032579
Bistarelli, S., Faloci, F., & Mori, P. (2023). *-chain: A framework for automating the modeling of blockchain based supply chain tracing systems. Future Generation Computer Systems, 149, 679–700. https://doi.org/10.1016/j.future.2023.07.012
Boru, A., Dosdoğru, A. T., Göçken, M., & Erol, R. (2019). A novel hybrid artificial intelligence based methodology for the inventory routing problem. Symmetry, 11(5). https://doi.org/10.3390/sym11050717
Boza, A., Alemany, M. M. E., Alarcón, F., & Cuenca, L. (2014). A model-driven DSS architecture for delivery management in collaborative supply chains with lack of homogeneity in products. Production Planning and Control, 25(8), 650–661. https://doi.org/10.1080/09537287.2013.798085
Büyüközkan, G., & Göçer, F. (2018). Digital Supply Chain: Literature review and a proposed framework for future research. Computers in Industry, 97, 157–177. https://doi.org/10.1016/j.compind.2018.02.010
Caniato, F., Golini, R., & Kalchschmidt, M. (2013). The effect of global supply chain configuration on the relationship between supply chain improvement programs and performance. International Journal of Production Economics, 143(2), 285–293. https://doi.org/10.1016/j.ijpe.2012.05.019
Cantini, A., Peron, M., De Carlo, F., & Sgarbossa, F. (2024). A decision support system for configuring spare parts supply chains considering different manufacturing technologies. International Journal of Production Research, 62(8), 3023–3043. https://doi.org/10.1080/00207543.2022.2041757
Chehbi-Gamoura, S., Derrouiche, R., Damand, D., & Barth, M. (2020). Insights from big Data Analytics in supply chain management: an all-inclusive literature review using the SCOR model. Production Planning and Control, 31(5), 355–382. https://doi.org/10.1080/09537287.2019.1639839
Chen, C. L., Chiang, M. L., Deng, Y. Y., Weng, W., Wang, K., & Liu, C. C. (2021). A traceable firearm management system based on blockchain and iot technology. Symmetry, 13(3). https://doi.org/10.3390/sym13030439
Chen, Y. M., Chen, T. Y., & Li, J. S. (2023). A Machine Learning-Based Anomaly Detection Method and Blockchain-Based Secure Protection Technology in Collaborative Food Supply Chain. International Journal of E-Collaboration, 19(1). https://doi.org/10.4018/IJeC.315789
Cheng, F., Yang, S. L., Akella, R., & Tang, & X. T. (2011). A Meta-Modelling Service Paradigm For Cloud Computing And Its Implementation. In South African Journal of Industrial Engineering (Vol. 22, Issue 2). http://sajie.journals.ac.za
Chopra, S., & Meindl, P. (2016). Supply Chain Management: Strategy, Planning, and Operation (6th ed.). Pearson Education.
Christopher, M. (2016). Logistics and Supply Chain Management (5th ed.). Pearson Education.
Cocco, L., Mannaro, K., Tonelli, R., Mariani, L., Lodi, M. B., Melis, A., Simone, M., & Fanti, A. (2021). A Blockchain-Based Traceability System in Agri-Food SME: Case Study of a Traditional Bakery. IEEE Access, 9, 62899–62915. https://doi.org/10.1109/ACCESS.2021.3074874
Cui, P., Dixon, J., Guin, U., & Dimase, D. (2019). A Blockchain-Based Framework for Supply Chain Provenance. IEEE Access, 7, 157113–157125. https://doi.org/10.1109/ACCESS.2019.2949951
Cuñat Negueroles, S., Reinosa Simón, R., Julián, M., Belsa, A., Lacalle, I., S-Julián, R., & Palau, C. E. (2024). A Blockchain-based Digital Twin for IoT deployments in logistics and transportation. Future Generation Computer Systems, 158, 73–88. https://doi.org/10.1016/j.future.2024.04.011
Della Valle, F., & Oliver, M. (2021). A guidance for blockchain-based digital transition in supply chains. Applied Sciences (Switzerland), 11(14). https://doi.org/10.3390/app11146523
El Midaoui, M., Qbadou, M., & Mansouri, K. (2022). A fuzzy-based prediction approach for blood delivery using machine learning and genetic algorithm. International Journal of Electrical and Computer Engineering, 12(1), 1056–1068. https://doi.org/10.11591/ijece.v12i1.pp1056-1068
Farooq, M. S., Riaz, S., Rehman, I. U., Khan, M. A., & Hassan, B. (2023). A Blockchain-Based Framework to Make the Rice Crop Supply Chain Transparent and Reliable in Agriculture. Systems, 11(9). https://doi.org/10.3390/systems11090476
Feng, Z., Li, W., Zhang, H., & Zhang, X. (2023). A Framework of a Blockchain-Supported Remanufacturing Trading Platform through Gap Analysis. Sustainability (Switzerland), 15(16). https://doi.org/10.3390/su151612120
Ferdousi, T., Gruenbacher, D., & Scoglio, C. M. (2020). A Permissioned Distributed Ledger for the US Beef Cattle Supply Chain. IEEE Access, 8, 154833–154847. https://doi.org/10.1109/ACCESS.2020.3019000
Fernández-Caramés, T. M., Fraga-Lamas, P., Suárez-Albela, M., & Díaz-Bouza, M. A. (2018). A fog computing based cyber-physical system for the automation of pipe-related tasks in the industry 4.0 shipyard. Sensors (Switzerland), 18(6). https://doi.org/10.3390/s18061961
Figorilli, S., Antonucci, F., Costa, C., Pallottino, F., Raso, L., Castiglione, M., Pinci, E., Del Vecchio, D., Colle, G., Proto, A. R., Sperandio, G., & Menesatti, P. (2018). A blockchain implementation prototype for the electronic open source traceability of wood along the whole supply chain. Sensors (Switzerland), 18(9). https://doi.org/10.3390/s18093133
Gayialis, S. P., Kechagias, E. P., Konstantakopoulos, G. D., & Papadopoulos, G. A. (2022). A Predictive Maintenance System for Reverse Supply Chain Operations. Logistics, 6(1). https://doi.org/10.3390/logistics6010004
George, W., & Al-Ansari, T. (2023). GM-Ledger: Blockchain-Based Certificate Authentication for International Food Trade. Foods, 12(21). https://doi.org/10.3390/foods12213914
Gereffi, G., & Lee, J. (2016). Economic and Social Upgrading in Global Value Chains and Industrial Clusters: Why Governance Matters. Journal of Business Ethics, 133(1), 25–38. https://doi.org/10.1007/s10551-014-2373-7
Ghasemi, R., Akhavan, P., Abbasi, M., & Valilai, O. F. (2023). A Novel Supplier-Managed Inventory Order Assignment Platform Enabled by Blockchain Technology. IEEE Access, 11, 140763–140773. https://doi.org/10.1109/ACCESS.2023.3341361
Gholipour, A., Sadegheih, A., Mostafaeipour, A., & Fakhrzad, M. B. (2024). Designing an optimal multi-objective model for a sustainable closed-loop supply chain: a case study of pomegranate in Iran. Environment, Development and Sustainability, 26(2), 3993–4027. https://doi.org/10.1007/s10668-022-02868-5
Giannakis, M., & Louis, M. (2016). A multi-agent based system with big data processing for enhanced supply chain agility. Journal of Enterprise Information Management, 29(5), 706–727. https://doi.org/10.1108/JEIM-06-2015-0050
Gondal, M. U. A., Khan, M. A., Haseeb, A., Albarakati, H. M., & Shabaz, M. (2023). A secure food supply chain solution: blockchain and IoT-enabled container to enhance the efficiency of shipment for strawberry supply chain. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1294829
Goodarzian, F., Ghasemi, P., Gunasekaran, A., & Labib, A. (2024). A fuzzy sustainable model for COVID-19 medical waste supply chain network. Fuzzy Optimization and Decision Making, 23(1), 93–127. https://doi.org/10.1007/s10700-023-09412-8
Gorecki, S., Possik, J., Zacharewicz, G., Ducq, Y., & Perry, N. (2020). A multicomponent distributed framework for smart production system modeling and simulation. Sustainability (Switzerland), 12(17). https://doi.org/10.3390/SU12176969
Guixia, X., Samian, N., Mohd Faizal, M. F., Mohd As’Ad, M. A. Z., Mohamad Fadzil, M. F., Abdullah, A., Seah, W. K. G., Ishak, M., & Hermadi, I. (2024). A Framework for Blockchain and Internet of Things Integration in Improving Food Security in the Food Supply Chain. Journal of Advanced Research in Applied Sciences and Engineering Technology, 34(1), 24–37. https://doi.org/10.37934/araset.34.1.2437
Gupya, O. (2023). Digital Transformation in Supply Chain India: Challenges and Opportunities. PsychologyandEducation, 55(1). https://doi.org/10.48047/pne.2018.55.1.52
Hartley, J. L., & Sawaya, W. J. (2019). Tortoise, not the hare: Digital transformation of supply chain business processes. Business Horizons, 62(6), 707–715. https://doi.org/10.1016/j.bushor.2019.07.006
Hasan, A. S. M. T., Sabah, S., Daria, A., & Haque, R. U. (2023). A peer-to-peer blockchain-based architecture for trusted and reliable agricultural product traceability. Decision Analytics Journal, 9. https://doi.org/10.1016/j.dajour.2023.100363
Hassouna, M., El-Henawy, I., & Haggag, R. (n.d.). A Multi-Objective Optimization for Supply Chain Management using Artificial Intelligence (AI). In IJACSA) International Journal of Advanced Computer Science and Applications (Vol. 13, Issue 8). www.ijacsa.thesai.org
Hawashin, D., Salah, K., Jayaraman, R., Yaqoob, I., & Musamih, A. (2022). A Blockchain-Based Solution for Mitigating Overproduction and Underconsumption of Medical Supplies. IEEE Access, 10, 71669–71682. https://doi.org/10.1109/ACCESS.2022.3188778
Helmi Ali, M., Chung, L., Kumar, A., Zailani, S., & Hua Tan, K. (2021). A Sustainable Blockchain Framework for the Halal Food Supply Chain: Lessons from Malaysia.
Hugos, M. (2018). Essentials of Supply Chain Management (4th ed.). John Wiley & Sons, Inc.
Hülsmann, M., Grapp, J., & Li, Y. (2008). Strategic adaptivity in global supply chains—Competitive advantage by autonomous cooperation. International Journal of Production Economics, 114(1), 14–26. https://doi.org/10.1016/j.ijpe.2007.09.009
Isaja, M., Nguyen, P., Goknil, A., Sen, S., Husom, E. J., Tverdal, S., Anand, A., Jiang, Y., Pedersen, K. J., Myrseth, P., Stang, J., Niavis, H., Pfeifhofer, S., & Lamplmair, P. (2023). A blockchain-based framework for trusted quality data sharing towards zero-defect manufacturing. Computers in Industry, 146. https://doi.org/10.1016/j.compind.2023.103853
Ivanov, D. (2024). Digital Supply Chain Management and Technology to Enhance Resilience by Building and Using End-to-End Visibility During the COVID-19 Pandemic. IEEE Transactions on Engineering Management, 1–11. https://doi.org/10.1109/TEM.2021.3095193
Jabbar, S., Lloyd, H., Hammoudeh, M., Adebisi, B., & Raza, U. (2021). Blockchain-enabled supply chain: analysis, challenges, and future directions. Multimedia Systems, 27(4), 787–806. https://doi.org/10.1007/s00530-020-00687-0
Jamil, F., Hang, L., Kim, K. H., & Kim, D. H. (2019). A novel medical blockchain model for drug supply chain integrity management in a smart hospital. Electronics (Switzerland), 8(5). https://doi.org/10.3390/electronics8050505
Jegan Joseph Jerome, J., Sonwaney, V., Bryde, D., & Graham, G. (2024). Achieving competitive advantage through technology-driven proactive supply chain risk management: an empirical study. Annals of Operations Research, 332(1–3), 149–190. https://doi.org/10.1007/s10479-023-05604-y
Jesse, F. F., Antonini, C., & Luque-Vilchez, M. (2023). A circularity accounting network: CO2 measurement along supply chains using machine learning. Revista de Contabilidad-Spanish Accounting Review, 26(Special Issue), 21–33. https://doi.org/10.6018/RCSAR.564901
Jha, A. K., Agi, M. A. N., & Ngai, E. W. T. (2020). A note on big data analytics capability development in supply chain. Decision Support Systems, 138. https://doi.org/10.1016/j.dss.2020.113382
Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. In International Journal of Production Economics (Vol. 219, pp. 179–194). Elsevier B.V. https://doi.org/10.1016/j.ijpe.2019.05.022
Kamble, S. S., Gunasekaran, A., Ghadge, A., & Raut, R. (2020). A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs- A review and empirical investigation. International Journal of Production Economics, 229, 107853. https://doi.org/10.1016/j.ijpe.2020.107853
Kamran, M. A., Kia, R., Goodarzian, F., & Ghasemi, P. (2023). A new vaccine supply chain network under COVID-19 conditions considering system dynamic: Artificial intelligence algorithms. Socio-Economic Planning Sciences, 85. https://doi.org/10.1016/j.seps.2022.101378
Kaur, G., Dey, B. K., Pandey, P., Majumder, A., & Gupta, S. (2024). A Smart Manufacturing Process for Textile Industry Automation under Uncertainties. Processes, 12(4). https://doi.org/10.3390/pr12040778
Kittipanya-ngam, P., & Tan, K. H. (2020). A framework for food supply chain digitalization: lessons from Thailand. Production Planning and Control, 31(2–3), 158–172. https://doi.org/10.1080/09537287.2019.1631462
Kousiouris, G., Tsarsitalidis, S., Psomakelis, E., Koloniaris, S., Bardaki, C., Tserpes, K., Nikolaidou, M., & Anagnostopoulos, D. (2019). A microservice-based framework for integrating IoT management platforms, semantic and AI services for supply chain management. ICT Express, 5(2), 141–145. https://doi.org/10.1016/j.icte.2019.04.002
Kulkarni, A., & Xu, C. (2021). A Deep Learning Approach in Optical Inspection to Detect Hidden Hardware Trojans and Secure Cybersecurity in Electronics Manufacturing Supply Chains. Frontiers in Mechanical Engineering, 7. https://doi.org/10.3389/fmech.2021.709924
Kumar, D., Singh, J., Singh, O. P., & Seema. (2013). A fuzzy logic based decision support system for evaluation of suppliers in supply chain management practices. Mathematical and Computer Modelling, 58(11–12), 1679–1695. https://doi.org/10.1016/j.mcm.2013.07.003
Lamela, M. P., Rodriguez-Molina, J., Martinez-Nunez, M., & Garbajosa, J. (2022). A Blockchain-Based Decentralized Marketplace for Trustworthy Trade in Developing Countries. IEEE Access, 10, 79100–79123. https://doi.org/10.1109/ACCESS.2022.3194511
L’Hermitte, C., & Nair, N. K. C. (2021). A blockchain-enabled framework for sharing logistics resources during emergency operations. Disasters, 45(3), 527–554. https://doi.org/10.1111/disa.12436
Li, Q., Zhang, H., Liu, K., Zhang, Z. J., & Jasimuddin, S. M. (2023). Linkage between digital supply chain, supply chain innovation and supply chain dynamic capabilities: an empirical study. The International Journal of Logistics Management. https://doi.org/10.1108/IJLM-01-2022-0009
Liang, W., Zhang, L., & Kadoch, M. (2023). 6G IoT Tracking- and Machine Learning-Enhanced Blockchained Supply Chain Management. Electronics (Switzerland), 12(1). https://doi.org/10.3390/electronics12010040
Liao, W., & Wang, T. (2019). A novel collaborative optimization model for job shop production-delivery considering time window and carbon emission. Sustainability (Switzerland), 11(10). https://doi.org/10.3390/su11102781
Lin, S. Y., Zhang, L., Li, J., Ji, L. li, & Sun, Y. (2022). A survey of application research based on blockchain smart contract. Wireless Networks, 28(2), 635–690. https://doi.org/10.1007/s11276-021-02874-x
Liu, W., Liang, Y., Lim, M. K., Long, S., & Shi, X. (2022). A theoretical framework of smart supply chain innovation for going global companies: a multi-case study from China. International Journal of Logistics Management, 33(3), 1090–1113. https://doi.org/10.1108/IJLM-10-2020-0388
Mahroof, K. (2019). A human-centric perspective exploring the readiness towards smart warehousing: The case of a large retail distribution warehouse. International Journal of Information Management, 45, 176–190. https://doi.org/10.1016/j.ijinfomgt.2018.11.008
Makridis, G., Mavrepis, P., & Kyriazis, D. (2023). A deep learning approach using natural language processing and time-series forecasting towards enhanced food safety. Machine Learning, 112(4), 1287–1313. https://doi.org/10.1007/s10994-022-06151-6
Malatji, M. (2024). Accelerating the African continental free trade area through optimization of digital supply chains. Engineering Reports, 6(2). https://doi.org/10.1002/eng2.12711
Marchese, A., & Tomarchio, O. (2022). A Blockchain-Based System for Agri-Food Supply Chain Traceability Management. SN Computer Science, 3(4). https://doi.org/10.1007/s42979-022-01148-3
Modares, A., Kazemi, M., Emroozi, V. B., & Roozkhosh, P. (2023). A New Supply Chain Design To Solve Supplier Selection Based On Internet Of Things And Delivery Reliability. Journal of Industrial and Management Optimization, 19(11), 7993–8028. https://doi.org/10.3934/jimo.2023028
Monteiro, E. S., Righi, R. da R., Barbosa, J. L. V., & Alberti, A. M. (2021). APTM: A model for pervasive traceability of agrochemicals. Applied Sciences (Switzerland), 11(17). https://doi.org/10.3390/app11178149
Montero, J., Weber, S., Bleckmann, M., & Paetzold, K. (2020). A methodology for the decentralised design and production of additive manufactured spare parts. Production and Manufacturing Research, 8(1), 313–334. https://doi.org/10.1080/21693277.2020.1790437
Muafi, M., & Sulistio, J. (2022). A Nexus Between Green Intelectual Capital, Supply Chain Integration, Digital Supply Chain, Supply Chain Agility, and Business Performance. Journal of Industrial Engineering and Management, 15(2), 275–295. https://doi.org/10.3926/jiem.3831
Mukherjee, P. (2017, March 15). Being an integral part of global supply chains: ’People power’ from innovation to expertise is what counts.
Musamih, A., Salah, K., Jayaraman, R., Arshad, J., Debe, M., Al-Hammadi, Y., & Ellahham, S. (2021). A blockchain-based approach for drug traceability in healthcare supply chain. IEEE Access, 9, 9728–9743. https://doi.org/10.1109/ACCESS.2021.3049920
Mustaffa, N. A., Zulkifli, M., & Khan, M. H. (2023). DSC Index Measuring the Digital Supply Chain Practice among the Higher EducationInstitutions Community in Least DevelopedCountries.
Nasereddin, A. Y. (2024). A comprehensive survey of contemporary supply chain management practices in charting the digital age revolution. Uncertain Supply Chain Management, 12(2), 1331–1352. https://doi.org/10.5267/j.uscm.2023.11.004
Nayak, G., & Dhaigude, A. S. (2019). A conceptual model of sustainable supply chain management in small and medium enterprises using blockchain technology. Cogent Economics and Finance, 7(1). https://doi.org/10.1080/23322039.2019.1667184
Nozari, H., Fallah, M., Szmelter-Jarosz, A., & Krzemiński, M. (2021). Analysis of Security Criteria for IoT-Based Supply Chain: A Case Study of FMCG Industries. Central European Management Journal, 29(4), 149–171. https://doi.org/10.7206/cemj.2658-0845.63
Nozari, H., Szmelter-Jarosz, A., & Ghahremani-Nahr, J. (2022). Analysis of the Challenges of Artificial Intelligence of Things (AIoT) for the Smart Supply Chain (Case Study: FMCG Industries). Sensors, 22(8), 2931. https://doi.org/10.3390/s22082931
Ouf, S. (2021). A Proposed Architecture for Pharmaceutical Supply Chain Based Semantic Blockchain. International Journal of Intelligent Engineering and Systems, 14(3), 31–42. https://doi.org/10.22266/ijies2021.0630.04
Parker, D. J., Nuttall, G. H., Bray, N., Hugill, T., Martinez-Santos, A., Edwards, R. T., & Nester, C. (2019). A randomised controlled trial and cost-consequence analysis of traditional and digital foot orthoses supply chains in a National Health Service setting: Application to feet at risk of diabetic plantar ulceration. Journal of Foot and Ankle Research, 12(1). https://doi.org/10.1186/s13047-018-0311-0
Popović, T., Krčo, S., Maraš, V., Hakola, L., Radonjić, S., van Kranenburg, R., & Šandi, S. (2021). A novel solution for counterfeit prevention in the wine industry based on IoT, smart tags, and crowd-sourced information. Internet of Things (Netherlands), 14. https://doi.org/10.1016/j.iot.2021.100375
Priyan, S. (2024). A blockchain-based inventory system with lot size-dependent lead times and uncertain carbon footprints. International Journal of Information Management Data Insights, 4(1). https://doi.org/10.1016/j.jjimei.2024.100225
Qu, M., Xu, T., & Ju, C. (2024). A Green Supply Chain Management Strategy for E-Commerce Based on Multiple Blockchain Technology. Applied Mathematics and Nonlinear Sciences, 9(1). https://doi.org/10.2478/amns.2023.2.00450
Queiroz, M. M., Pereira, S. C. F., Telles, R., & Machado, M. C. (2021). Industry 4.0 and digital supply chain capabilities. Benchmarking: An International Journal, 28(5), 1761–1782. https://doi.org/10.1108/BIJ-12-2018-0435
Raj, A., Dwivedi, G., Sharma, A., Lopes de Sousa Jabbour, A. B., & Rajak, S. (2020). Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics, 224, 107546. https://doi.org/10.1016/j.ijpe.2019.107546
Rajput, S., & Singh, S. P. (2019). Identifying Industry 4.0 IoT enablers by integrated PCA-ISM-DEMATEL approach. Management Decision, 57(8), 1784–1817. https://doi.org/10.1108/MD-04-2018-0378
Ramanathan, K., & Samaranayake, P. (2022). Assessing Industry 4.0 readiness in manufacturing: a self-diagnostic framework and an illustrative case study. Journal of Manufacturing Technology Management, 33(3), 468–488. https://doi.org/10.1108/JMTM-09-2021-0339
Ransikarbum, K., Pitakaso, R., & Kim, N. (2020). A decision-support model for additive manufacturing scheduling using an integrative analytic hierarchy process and multi-objective optimization. Applied Sciences (Switzerland), 10(15). https://doi.org/10.3390/app10155159
Saban, M., Bekkour, M., Amdaouch, I., El Gueri, J., Ait Ahmed, B., Chaari, M. Z., Ruiz-Alzola, J., Rosado-Muñoz, A., & Aghzout, O. (2023). A Smart Agricultural System Based on PLC and a Cloud Computing Web Application Using LoRa and LoRaWan. Sensors, 23(5). https://doi.org/10.3390/s23052725
Salmi, M., Akmal, J. S., Pei, E., Wolff, J., Jaribion, A., & Khajavi, S. H. (2020). 3D printing in COVID-19: Productivity estimation of the most promising open source solutions in emergency situations. Applied Sciences (Switzerland), 10(11). https://doi.org/10.3390/app10114004
Santos, R. C., & Martinho, J. L. (2019). An Industry 4.0 maturity model proposal. Journal of Manufacturing Technology Management, 31(5), 1023–1043. https://doi.org/10.1108/JMTM-09-2018-0284
Satzer, P., & Achleitner, L. (2022). 3D printing: Economical and supply chain independent single-use plasticware for cell culture. New Biotechnology, 69, 55–61. https://doi.org/10.1016/j.nbt.2022.03.002
Schumacher, A., Erol, S., & Sihn, W. (2016). A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises. Procedia CIRP, 52, 161–166. https://doi.org/10.1016/j.procir.2016.07.040
Scuotto, V., Caputo, F., Villasalero, M., & Del Giudice, M. (2017). A multiple buyer–supplier relationship in the context of SMEs’ digital supply chain management*. Production Planning and Control, 28(16), 1378–1388. https://doi.org/10.1080/09537287.2017.1375149
Shah, J. K., Sharma, M., & Joshi, S. (2023). Digital supply chain management: A comprehensive review using cluster analysis, with future directions and open challenges. International Journal of Supply and Operations Management, 10(3), 337–364. https://doi.org/10.22034/ijsom.2023.109914.2739
Shahbazi, Z., & Byun, Y. C. (2021). A procedure for tracing supply chains for perishable food based on blockchain, machine learning and fuzzy logic. Electronics (Switzerland), 10(1), 1–21. https://doi.org/10.3390/electronics10010041
Shamout, M., Ben-Abdallah, R., Alshurideh, M., Alzoubi, H., Al Kurdi, B., & Hamadneh, S. (2022). A conceptual model for the adoption of autonomous robots in supply chain and logistics industry. Uncertain Supply Chain Management, 10(2), 577–592. https://doi.org/10.5267/j.uscm.2021.11.006
Shen, B., Xu, X., & Yuan, Q. (2020). Selling secondhand products through an online platform with blockchain. Transportation Research Part E: Logistics and Transportation Review, 142. https://doi.org/10.1016/j.tre.2020.102066
Singh, D., & Chaddah, J. K. (2021). A study on application of blockchain technology to control counterfeit drugs, enhance data privacy and improve distribution in online pharmacy. Asia Pacific Journal of Health Management, 16(3). https://doi.org/10.24083/apjhm.v16i3.1013
Sitek, P., Wikarek, J., & Nielsen, P. (2017). A constraint-driven approach to food supply chain management. Industrial Management and Data Systems, 117(9), 2115–2138. https://doi.org/10.1108/IMDS-10-2016-0465
Stentoft, J., Adsbøll Wickstrøm, K., Philipsen, K., & Haug, A. (2021). Drivers and barriers for Industry 4.0 readiness and practice: empirical evidence from small and medium-sized manufacturers. Production Planning & Control, 32(10), 811–828. https://doi.org/10.1080/09537287.2020.1768318
Subramaniyam, M., Halim-Lim, S. A., Mohamad, S. F. B., & Priyono, A. (2021). Digital Supply Chain in the Food Industry: Critical Success Factors and Barriers. 2021 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2021, 404–410. https://doi.org/10.1109/IEEM50564.2021.9672606
Tan, A., & Ngan, P. T. (2020). A proposed framework model for dairy supply chain traceability. Sustainable Futures, 2. https://doi.org/10.1016/j.sftr.2020.100034
Tan, B. Q., Wang, F., Liu, J., Kang, K., & Costa, F. (2020). A blockchain-based framework for green logistics in supply chains. Sustainability (Switzerland), 12(11). https://doi.org/10.3390/su12114656
Tang, Q., Wu, B., Chen, W., & Yue, J. (2023). A Digital Twin-Assisted Collaborative Capability Optimization Model for Smart Manufacturing System Based on Elman-IVIF-TOPSIS. IEEE Access, 11, 40540–40564. https://doi.org/10.1109/ACCESS.2023.3269577
Tao, Q., Cai, Z., & Cui, X. (2023). A technological quality control system for rice supply chain. Food and Energy Security, 12(2). https://doi.org/10.1002/fes3.382
Thelwall, M. (2018). Dimensions: A competitor to Scopus and the Web of Science? Journal of Informetrics, 12(2), 430–435. https://doi.org/10.1016/j.joi.2018.03.006
Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What does Industry 4.0 mean to Supply Chain? Procedia Manufacturing, 13, 1175–1182. https://doi.org/10.1016/j.promfg.2017.09.191
Toyoda, K., Takis Mathiopoulos, P., Sasase, I., & Ohtsuki, T. (2017). A Novel Blockchain-Based Product Ownership Management System (POMS) for Anti-Counterfeits in the Post Supply Chain. IEEE Access, 5, 17465–17477. https://doi.org/10.1109/ACCESS.2017.2720760
Trabucco, M., & De Giovanni, P. (2021). Achieving resilience and business sustainability during COVID-19: The role of lean supply chain practices and digitalization. Sustainability (Switzerland), 13(22). https://doi.org/10.3390/su132212369
Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence‐Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375
Valencia-Payan, C., Grass-Ramirez, J. F., Ramirez-Gonzalez, G., & Corrales, J. C. (2022). A Smart Contract for Coffee Transport and Storage With Data Validation. IEEE Access, 10, 37857–37869. https://doi.org/10.1109/ACCESS.2022.3165087
Verdouw, C. N., Beulens, A. J. M., Reijers, H. A., & Van Der Vorst, J. G. A. J. (2015). A control model for object virtualization in supply chain management. Computers in Industry, 68, 116–131. https://doi.org/10.1016/j.compind.2014.12.011
Vinayavekhin, S., Banerjee, A., & Li, F. (2024). “Putting your money where your mouth is”: An empirical study on buyers’ preferences and willingness to pay for blockchain-enabled sustainable supply chain transparency. Journal of Purchasing and Supply Management. https://doi.org/10.1016/j.pursup.2024.100900
Violino, S., Pallottino, F., Sperandio, G., Figorilli, S., Ortenzi, L., Tocci, F., Vasta, S., Imperi, G., & Costa, C. (2020). A full technological traceability system for extra virgin olive oil. Foods, 9(5). https://doi.org/10.3390/foods9050624
Viswanadham, Y. V. R. S., & Jayavel, K. (2023). A Framework for Data Privacy Preserving in Supply Chain Management Using Hybrid Meta-Heuristic Algorithm with Ethereum Blockchain Technology. Electronics (Switzerland), 12(6). https://doi.org/10.3390/electronics12061404
Wang, L., He, Y., & Wu, Z. (2022). Design of a Blockchain‐Enabled Traceability System Framework for Food Supply Chains. Foods, 11(5). https://doi.org/10.3390/foods11050744
Wang, W. (2024). A IoT-Based Framework for Cross-Border E-Commerce Supply Chain Using Machine Learning and Optimization. IEEE Access, 12, 1852–1864. https://doi.org/10.1109/ACCESS.2023.3347452
Weerabahu, W. M. S. K., Samaranayake, P., Nakandala, D., & Hurriyet, H. (2023). Digital supply chain research trends: a systematic review and a maturity model for adoption. In Benchmarking (Vol. 30, Issue 9, pp. 3040–3066). Emerald Publishing. https://doi.org/10.1108/BIJ-12-2021-0782
Wilson, S., Adu-Duodu, K., Li, Y., Sham, R., Almubarak, M., Wang, Y., Solaiman, E., Perera, C., Ranjan, R., & Rana, O. (2024). Blockchain-Enabled Provenance Tracking for Sustainable Material Reuse in Construction Supply Chains †. Future Internet, 16(4). https://doi.org/10.3390/fi16040135
Wu, C. H., Tsang, Y. P., Lee, C. K. M., & Ching, W. K. (2021). A blockchain-iot platform for the smart pallet pooling management. Sensors, 21(18). https://doi.org/10.3390/s21186310
Wu, H., Li, Z., King, B., Miled, Z. Ben, Wassick, J., & Tazelaar, J. (2017). A distributed ledger for supply chain physical distribution visibility. Information (Switzerland), 8(4). https://doi.org/10.3390/info8040137
Xia, W., Li, B., & Yin, S. (2020). A prescription for urban sustainability transitions in China: Innovative partner selection management of green building materials industry in an integrated supply chain. Sustainability (Switzerland), 12(7). https://doi.org/10.3390/su12072581
Xiao, R., Zhang, Y., Cui, X. H., Zhang, F., & Wang, H. H. (2021). A hybrid task crash recovery solution for edge computing in IoT-based manufacturing. IEEE Access, 9, 106220–106231. https://doi.org/10.1109/ACCESS.2021.3068471
Xiong, F., Xiao, R., Ren, W., Zheng, R., & Jiang, J. (2019). A key protection scheme based on secret sharing for blockchain-based construction supply chain system. IEEE Access, 7, 126773–126786. https://doi.org/10.1109/ACCESS.2019.2937917
Xue, F., & Li, F. (2023). A Quality Traceability System for Fruit and Vegetable Supply Chain Based on Multi-Chain Blockchain. International Journal of Information Systems and Supply Chain Management, 16(1). https://doi.org/10.4018/IJISSCM.330681
Yong Chan, K., Abdullah, J., & Shahid Khan, A. (2019). A Framework for Traceable and Transparent Supply Chain Management for Agri-food Sector in Malaysia using Blockchain Technology. In IJACSA) International Journal of Advanced Computer Science and Applications (Vol. 10, Issue 11). www.ijacsa.thesai.org
Yoo, M., & Won, Y. (2018). A study on the transparent price tracing system in supply chain management based on blockchain. Sustainability (Switzerland), 10(11). https://doi.org/10.3390/su10114037
Zekhnini, K., Cherrafi, A., Bouhaddou, I., Benghabrit, Y., & Garza-Reyes, J. A. (2020). Supply chain management 4.0: a literature review and research framework. Benchmarking: An International Journal, 28(2), 465–501. https://doi.org/10.1108/BIJ-04-2020-0156
Zhang, H., Lv, Y., Zhang, S., & Liu, Y. D. (2024). Digital Supply Chain Management: A Review and Bibliometric Analysis. Journal of Global Information Management, 32(1). https://doi.org/10.4018/JGIM.336285
Zhang, H., Yan, Q., Qin, Y., Chen, S., & Zhang, G. (2023). A Novel Approach of Resource Allocation for Distributed Digital Twin Shop-Floor. Information (Switzerland), 14(8). https://doi.org/10.3390/info14080458
Zhang, Y., Wu, X., Ge, H., Jiang, Y., Sun, Z., Ji, X., Jia, Z., & Cui, G. (2023). A Blockchain-Based Traceability Model for Grain and Oil Food Supply Chain. Foods, 12(17). https://doi.org/10.3390/foods12173235
Zhu, P., Hu, J., Zhang, Y., & Li, X. (2020). A blockchain based solution for medication anti-counterfeiting and traceability. IEEE Access, 8, 184256–184272. https://doi.org/10.1109/ACCESS.2020.3029196
Copyright (c) 2024 Muhammad Saad Salahudin, Imam Baihaqi, Yen-Ching Liu
This work is licensed under a Creative Commons Attribution 4.0 International License.